
THE TWISTOR LINE

Abstract. Over C, the nth singular cohomology group of a variety has a canonical
mixed Hodge structure. If we restrict to smooth projective varieties, we get a pure Hodge
structure.

It was observed by Simpson that the category of pure Hodge structures can be formu-
lated geometrically as a category of vector bundles on a curve, and so can the association
of Hodge structure to variety. I’ll talk about how this is done using the twistor line.

1. Hodge theory review

Hodge theory in general can tell us about varieties over C, but in this talk I’ll stick to
smooth projective varieties since that makes everything a lot easier to state.

When I have a smooth projective variety X over C, I can take the associated complex
manifold Xan to X(C). This is realized as a complex submanifold Xan ⊆ Pn(C), which
implies it is compact.

It is also going to be Kähler, which means there is a Hermitian metric h on TXan (that
is, we put a smoothly varying positive definite Hermitian form on each fiber). Kähler
means the associated 2-form ω = ℑ(h(v, w)) is closed. You can think of a complex man-
ifold being Kähler as giving the data of compatible Riemannian, complex, and symplectic
structures.

We can also see this from the fact that Xan sits inside projective space as a complex sub-
manifold: we can use the Fubini-Study form to make Pn(C) a Kähler manifold, so by
restricting the Káhler form we obtain one on Xan.

In this restricted setting, we have the following important theorem.

Theorem 1.1. Let X be a compact Kähler manifold. Then

Hn
sing(X,C) ≃

⊕
p+q=n

Hp,q

where Hp,q ≃ Hq(X,Ωp). We call the direct sum Dorbealt cohomology.

Moreover, if X arises from a smooth projective variety, we can compute Hq(X,Ωp)
algebraically.

This is interesting, since the singular cohomology is topological in nature and the Dorbealt
cohomology is algebraic in nature. The numbers hp,q := dimC Hq(X,Ωp) are called the
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Hodge numbers. We note that these exhibit two general symmetries: hp,q = hq,p, and
hN−p,N−q = hp,q for dimC X = N .

This decomposition allows us to write down what is called an integral Hodge structure.

Definition 1.2. A pure integral Hodge structure of weight n is a pair (HZ,H
p,q)

consisting of a free finitely generated abelian group HZ and a decomposition

HZ ⊗Z C =
⊕

p+q=n

Hp,q

where Hp,q = Hq,p.

Similarly, one defines rational and real Hodge structures.

There is a canonical way to attach such structures to compact Kähler manifolds: you take
Hn(X,Z)/tors, and then when we tensor with C you get the Hodge structure from the
Hodge decomposition theorem.

Note that this association is functorial, in that given a holomorphic map f we get a map
of the associated Hodge structures: this is a group homomorphism VZ → WZ, such that
Vp,q lands inside Wp,q .

2. Geometric interpretation of Hodge structures

My goal will be to explain how both pure Hodge stuctures and the functorial association
of a pure Hodge structure of a smooth projective variety can be produced geometrically
from a curve.

To motivate this construction, I want to introduce a definition which is slightly less stan-
dard.

Definition 2.1. A pure complex Hodge structure of weight n is a complex vector
space V, along with the data of two filtrations F iV and F

i
V such that

V =
⊕

p+q=n

Vp,q,

where Vp,q = F pV ∩ F
q
V.

In our case, there is a natural definition for these filtrations coming from the Hodge filtra-
tion: there exists a filtration F p on Hn

sing(X(C),C) by taking
⊕

p′≥p,p′+q′=nH
p′(X,Ωq′).

There is an action of complex conjugation on this, giving a conjugate filtration. This de-
fines F .
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Our first goal will be to geometrically encode these structures by realizing them in a cat-
egory of vector bundles on a curve. Once this is done, it will be more clear how to encode
the real Hodge structure attached to X.

Our starting point will be the following observation which will help encode filtrations.
We let Gm act on A1 = SpecC[x] via setting the action of t ∈ Gm to be

x 7→ tx.

Lemma 2.2. A vector bundle on A1
C which is Gm-equivariant is equivalent to a fil-

tered vector space.

This shouldn’t be too surprising, since Gm = SpecC[x, x−1] = SpecC[Z] means its
representations break into a direct sum of Z-indexed eigenspaces. In particular, an action
of this group on a quasicoherent sheaf on A1

C is equivalent to the data of a Z-grading on
the corresponding C[x]-module.

The map in one direction is as follows. Given a vector space V and filtration F iV, we
associate the Rees module

Rees(V, F iV) :=
⊕
i∈Z

F iVx−i ⊂ V ⊗C[x, x−1].

We use deg x = 1 to give this a grading, and this will then be a graded C[x] module or a
quasicoherent sheaf on A1

C with a Gm action.

Conversely, if we are given a Gm-equivariant vector bundle we can look at the fiber over
1 ∈ A1

C. Looking at the orders of poles of Gm-invariant sections, we obtain a filtration
on this fiber. Namely, given a module M which is locally free, we look at the fiber V =
M1 := M/(x− 1)M . Using M =

⊕
i∈ZMi, we define

F iV := im(M−i → V).

This is the inverse construction.

With this, the following lemma is easy to prove.

Lemma 2.3. Vector bundles on P1
C which are Gm-equivariant are equivalent to vec-

tor spaces with two filtrations.

Proof. Basically, we have two ways to get the same vector space: look at the affine chart
A1

C = P1
C \ ∞ or A1

C = P1
C \ 0. Both of these give you vector bundles on A1

C which
are Gm equivariant, or a complex vector space with a filtration.
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There need be no compatibility between these filtrations: we can take a pair of filtrations
on V and glue these together. Indeed, realize both as Gm-equivariant vector bundles on
A1

C, and choose Gm-equivariant trivializations of both. We identify these on

P1 \ {0,∞} = Gm

and then use this to glue them together. □

A natural question then arises. Given a Gm-equivariant vector bundle on P1
C, what con-

ditions ensure that it corresponds to a pure complex Hodge structure? The answer is quite
simple. Let Gm act on P1

C via [x : y] 7→ [tx, y].

Theorem 2.4. A Gm-equivariant vector bundle on P1
C is a pure complex Hodge

structure if and only if it is semistable after forgetting the Gm action.

Here, V being semistable means for all nonzero proper subbundles W ≤ V we have

degW/rankW ≤ degV/rankV.

Since we know a full classification of vector bundles, we can say semistable is equivalent
to being of the form OP1

C
(n)⊕i. If we had different n, taking the largest one gives a

destabilizing subbundle.

To see why this is reasonable, suppose we takeO(n) and look at the action onO(n)|A1
C
≃

OA1
C

; say the associated filtration is C, until we get to F i = 0.

On the other affine chart with coordinate x, since multiplication by x−n is the transition
function, we get C until F

i+n
= 0. We can see this change by looking at the Rees module.

This means O(n) will give us some pure Hodge structure of weight n. In general, if we
mix line bundles of different degrees there will not be a uniform shift so we cannot get
V =

⊕
i+j=n F

iV ∩ F
j
V. This is why we need semistability.

While this answers the question of geometrization for the complex Hodge structure in a
satisfactory way, there is a deeper structure we want to actually capture.

Namely, the group Hn
sing(X(C),R) has what is known as a real Hodge structure. This is

now in the realm of things people actually consider in Hodge theory.

Definition 2.5. A pure real Hodge structure of weight n is a vector space VR along
with a decomposition

VC ≃
⊕

p+q=n

Vp,q

where Vp,q = Vq,p.
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Via the same filtrations, Hn
sing(X(C),R) carries a real Hodge structure. Given what we’ve

seen with P1
C, it’s natural to expect that a similar thing should work but with a real form

of P1
C.

This is indeed the case! The twistor line P1
tw is constructed from P1

C: there is an auto-
morphism of P1

C sending z 7→ −1
z
, which gives a descent datum.

This gives us a real form of P1
C, denoted by P1

tw, which is an algebraic curve over R. We
can explicitly write it as follows:

P1
tw = ProjR[x, y, z]/(x2 + y2 + z2).

Observe that this has no real points. There is a covering map

P1
C → P1

tw

so we deduce that π1(P
1
tw) = Z/2Z.

Before, we had an action on P1
C by Gm. This action descends to an action by the unitary

group U(1)/R, given by

U(1) =

{(
x y
−y x

)
, x2 + y2 = 1

}
⊆ GL2,R.

Note that the Deligne torus is different, we just ask for the determinant to be a unit.
With the way P1

tw is explicitly described, you can also see the natural action. Note that
the action is actually free on P1

tw \∞.

If we want to be a bit more suggestive, this actually comes equipped with a natural action
of the Weil group WR = C× ∪ jC× ⊆ H. You can think of P1

tw as the projectivized
cone of the scheme of traceless norm zero elements of H (this has C points), which is how
we get a natural action. Note that this is really sort of false advertising though, because it
really is an action of the Weil group modulo its center.

Define for half integral λ
OP1

tw
(λ) := π∗OP1

C
(2λ)

and for integral lambda set this to be L such that the pullback π∗L is OP1
C
(2λ).

Theorem 2.6. We can classify vector bundles on P1
tw via the classification on P1

C.
Namely, for every finite decreasing half-integer sequence {λi} we attach the vector
bundle

⊕
i OP1

tw
(λ). This is a bijection.

Semistable vector bundles of slope zero correspond to real vector spaces.
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Remark 2.7. In general, G-bundles up to isomorphism are classified by B(G) :=
H1(WR,G(C)) of equivalence classes of cocycles WR → G(C) whose restriction
to C× is algebraic, where the Weil group acts by its restriction to Gal(C/R).

With this classification in hand, we’ll try to adapt what we had for pure real Hodge struc-
tures of weight n.

As there is a U(1) action on P1
tw, it makes sense to talk about U(1)-equivariant vector

bundles.

The starting point is the following result.

Lemma 2.8. The category ofU(1)-equivariant vector bundles onP1
tw is equivalent to

the category of real vector spaces equipped with a filtration on their complexification.

Proof. The idea is to use Beauville-Laszlo gluing. Let me revisit A1
C to explain how it

works. Basically, if we look at Gm ⊂ A1
C, the action of Gm restricts to this subset.

The gluing theorem tells us that in such a case, the data of a Gm-equivariant vector bundle
is equivalent to the following:

• A Gm-equivariant vector bundle V on Gm (necessarily trivial).

• A Gm-equivariant vector bundle Vε on SpecC[[x]].

• A gluing datum on SpecC((x)): V ⊗Gm C((x)) ≃ Vε ⊗C[[x]] C((x)).

Geometrically, you can think of this as giving a vector bundle on A1\0 and a small neigh-
borhood of 0, along with a gluing datum. This works for G-equivariant vector bundles,
so long as G preserves A1 \ 0.

You’ll notice that this data boils down to giving aGm-equivariant vector bundle onSpecC[[x]],
along with a trivialization onC((x)) asV is always trivial. Then the above data is the same
as giving a lattice in V ⊗ C((x)) given by Vε, which we just ask to be Gm-equivariant.
This is now much simpler: you’ll actually just get

∑
i∈Z F

iV[[x]]x−i, which is completely
analogous to the Rees module we made earlier.

Now, we go to our case. The situation is extremely similar, except now we have a U(1)
acton on P1

tw. Pick a local coordinate λ for the point at ∞, which we want to use as
P1

tw \∞ is stable under the U(1) action.

Moreover, it again can be shown U(1)-equivariant vector bundles on P1
tw \ ∞ are triv-

ial. This allows us to reduce to writing down a U(1)-equivariant vector bundle on the
neighborhood SpecC[[λ]] of ∞, or equivalently a U(1)-equivariant lattice

Λ ⊂ VC ⊗C((λ)).
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These are of the form
∑

p∈Z λ
−pF pVC[[λ]] and hence are equivalent to filtrations on VC.

Here, we should think of λ as just a local parameter at ∞.

The basic difference between these examples is that in the second we went to great lengths
to make V correspond to a real vector space, by working with P1

tw \∞. □

In light of what happens for P1
C, the following is not so surprising.

Theorem 2.9. The category of pure real Hodge structures is equivalent to the cat-
egory of U(1)-equivariant semistable vector bundles on P1

tw. Weight n pure real
Hodge structures correspond to semistable vector bundles of slope n/2.

The functor here sends a pure real Hodge structure (V,Vp,q) to the lattice

Λ =
∑
p∈Z

λ−pF pV[[λ]]

which lies inside V ⊗R C((λ)) ≃ VC ⊗C C((λ)). The lattice is U(1)-equivariant,
and so defines a U(1)-equivariant vector bundle.

Note that a pure real Hodge structure of weightn corresponds to a direct sumOP1
tw
(n/2)⊕i

where i is the dimension of the underlying vector space, since we can again directly trans-
late the meaning of semistability.

We’ve essentially already said how to build a pure Hodge structure out of X: you build it
by modifying the vector bundle by using the Hodge filtration to give theU(1)-equivariant
lattice Λ at ∞. Let’s just say explicitly how this is done in a slightly different way.

Consider the vector bundle

EX = Hn
sing(X(C),R)⊗R OP1

tw
.

This is semistable of slope zero, and trivial. We’ll modify it to be nontrivial.

In the formal neighborhood of ∞ (using coordinate λ) we can identify global sections of
this with the nth hypercohomology of

Ω0
X[[λ]] Ω1

X[[λ]] Ω2
X[[λ]] . . .

by using the comparison with de Rham cohomology. We now make a slight modification
of this: we change this to

Ω0
X[[λ]] λ−1Ω1

X[[λ]] λ−2Ω2
X[[λ]] . . .

instead on SpfC[[λ]]. We then make a vector bundle VX which is isomorphic to EX,
except on the formal neighborhood where we replace it with this complex. This corre-
sponds to the Hodge filtration as a U(1)-invariant vector bundle on SpfC[[λ]], as the
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corresponding lattice will be
∑

p λ
pF pHn

sing(X(C),R)[[λ]] for F the Hodge filtration:
we get F p by truncating the de Rham complex. We therefore have a modification of vec-
tor bundles

EX VX
Hodge

where V is a U(1)-equivariant vector bundle of slope n/2.

It’s worth noting that looking at the trivial bundle EX, we get the following “de Rham
comparison theorem”:

(EX ⊗C((λ)))WR ≃ Hi
dR(X),

which works for a general algebraic variety X/R.

In summary, there is the following dictionary:

Hodge theory Twistors
Real Hodge structure (filtration on VC) U(1)-equivariant vector bundle on P1

tw

Pure Hodge structure Semistable U(1)-equivariant vector bundle on P1
tw

Weight n of Hodge structure Slope n/2 of vector bundle
Hodge structure of X Modification VX of WX at ∞

Underlying vector space Trivial bundle VX|P1
tw\∞

Hodge filtration Lattice Λ for modification at ∞

3. Big picture

From Simpson’s perspective, this formulation is really useful because it can generalize
to the notion of a mixed twistor structure. This geometrically encodes the notion of a
mixed Hodge structure which appears when we work for general complex varieties, and
in general one can translate results about mixed Hodge structures into ones about mixed
twistor structures.

However, the notion of a mixed twistor structure is a bit more flexible than that of a
mixed Hodge structure. It allows for a notion of weights in some more general settings
that Hodge structures do not allow, due to their more geometric nature. For example, one
can use these for the theory of mixed twistor D-modules.

From the perspective of number theory, P1
tw is interesting because its approach to Hodge

theory is largely parallel to the approach to p-adic Hodge theory via the Fargues-Fontaine
curve. In this sense, it gives a better uniform explanation of what “Hodge theory” means.

Without saying anything about the Fargues-Fontaine curve, let me explain a little bit
about how the analogy goes. The Fargues-Fontaine curve has a GK action, analogous to
how there is a Weil group action on P1

tw.

The comparison theorem

(EX ⊗C((λ)))WR ≃ Hi
dR(X)
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resembles de Rham comparison in p-adic Hodge theory: this tells us for a p-adic field K
and smooth proper X/K

(Hn
ét(XK ,Qp)⊗Qp BdR)

GK = Hn
dR(X/K).

If we forget the topology, we have BdR ≃ Cp((λ)).

Additionally, we also have a GK-equivariant modification

Hn
ét(XK ,Qp)⊗Qp OX VX

which can be interpreted as a certain type of semilinear algebraic object that parallels a
Hodge structure. These classify certain Galois representations, and studying them via the
curve can give better proofs of these classification results.
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