
SHTUKAS

1. Shtukas

First, I want to motivate the concept of a shtuka from a number theory perspective. In order to get a
some sort of map from the automorphic side to the spectral side, the way of doing this over Q is to
look at schemes over number fields which have both an action of G(Af ) and an action of GK for a
number field K . More specifically, we need some specific control over these actions, which comes in
the form of relating the action of the Hecke algebra T to the Galois action of Frobp ∈ GK .

This can also be done in the function field setting, where the resulting objects are a great deal simpler.
We have a correspondence

HeckeXI

BunG BunG

which gives an action of Hecke operators on G-bundles. In particular, Hecke operators act by modi-
fications of G-bundles.

Since the Hecke stack has a map π : HeckeXI → XI, one idea might be to use π! in some way to
produce a sheaf on XI with an action of the Hecke algebra. The naive expectation might be that we
can get a Galois action via πét

1 (X)
I, but actually this fails quite badly: there is a difference between

πét
1 (X

I) and πét
1 (X)

I, for example take X = A1
Fp

. What is needed to fix this issue is the idea of a
partial Frobenius: if we add compatibility with partial Frobenii on XI, Drinfeld’s lemma gives us an
actual Galois action. There is not too much hope in this situation because the action of Frobenius on a
G-bundle and modifications of G-bundles have nothing to do with each other, so we shouldn’t expect
any such compatibility.

We define a stack ShtG,I as a fiber product

ShtI HeckeXI

BunG BunG × BunG

⃗h,⃗h

Frob,Id

so that we’ve forced modifications of G-bundles and Frobenius to have something to do with each
other. This comes equipped with a map π′ : ShtI → XI via the Hecke stack. As a basic example, we
know that

Functc(BunG(Fq)) = Autom

which clearly has a Hecke action. This is coming from Sht∅: we have a cartesian square
1



2 SHTUKAS

Sht∅ = BunG(Fq) BunG

BunG BunG × BunG.
Frob,Id

Taking π′
!Qℓ, we get Autom.

In general, we use the sheaves SV on the Hecke stack coming from classical geometric Satake. Namely,
for such a V ∈ Rep(Ǧ)⊗I we obtain a sheaf SV ∈ Shv(HeckeXI). This induces a sheaf S ′

V on ShtI,
and we then define

ShtI,V := π′
!S ′

V ∈ Shv(XI).

It is now known by a theorem on Cong Xue that these lie in QLisse(XI). Furthermore, they now come
equipped equivariance with partial Frobenii on XI so that we actually get a Galois action.

The sheaves ShtI,V can be assembled into a sheaf DrinfSht in QCoh(LocSysarithm). There is an alter-
native construction Drinf of this sheaf as a categorical trace, which we’ll talk about.

These are really the main player in everything done in global function field Langlands. By adding
level structures, these are essential in the proof for GLn. Lafforgue utilizes these, again with level
structure, to construct excursion operators. These correspond to generators of an algebra B related to
Exc = Γ(LocSysarithm,O) (the discrete, underived version of this). This algebra acts on automorphic
forms via the excursion operators, and then automorphic forms get decomposed into B-eigenspaces.
By construction, the characters of this algebra correspond to L-parameters, and compatibility of ex-
cursion and Hecke operators gives the desired compatibility of the decomposition

Ccusp
c (BunG,N(Fq)/Ξ,Qℓ) =

⊕
σ:Gal(F/F )→Ǧ(Qℓ)

hσ

with Satake parameters. The sheaf DrinfSht ≃ Drinf captures an unramified version of this via the
action of Exc acting on its global sections, which are going to be Autom.

2. Construction of DrinfSht

Our first task is to assemble these elements ofQLisse(XI) into a single objectDrinfSht ∈ QCoh(LocSysarithm).

Lemma 2.1. The category QCoh(LocSysrestr) is canonically self-dual, induced by the pairing

F1,F2 7→ Γ!(LocSys
restr,F1 ⊗ F2).

The same holds for LocSysarithm, but with Γ.

Proof. This holds usingΓ for any quasicompact stack which is locally almost of finite type. When we are
in a situation where things are not quasicompact, we make a replacement Γ! to still get a duality. □

Using the canonical self-duality, we will be able to construct objects from collections of functors re-
sembling shtukas. Some definitions are in order first.

Let I ∈ FinSet, and V ∈ Rep(Ǧ)⊗I. We will produce an object

E I
V ∈ QCoh(LocSysrestr)⊗ QLisse(X)⊗I.



SHTUKAS 3

Let us explain how this is produced in general. If H is a dualizable gentle Tannakian category, we look
at the map

Rep(Ǧ)⊗I → QCoh(Maps(Rep(Ǧ),H))⊗I ⊗H⊗I

and applying the tensor product functor we land in QCoh(Maps(Rep(Ǧ)),H)⊗H⊗I.

We obtain the first functor by passing to the limit on the functors

Rep(Ǧ) → QCoh(S)⊗H

for S ∈ Schaff/Maps(Rep(Ǧ),H), which will be QCoh(Maps(Rep(Ǧ),H))⊗H by virtue of H being dual-
izable.

Now apply this formalism for QLisse, and we have explained how to produce E I. As constructed, this
is a functor and not an object; E I

V is the value on V.

Theorem 2.2. The functor

coLoc : QCoh(LocSysrestr) → Maps(Rep(Ǧ)⊗FinSet,QLisse(X)⊗FinSet)

is an equivalence.

This sends F to the functors

V 7→ (Γ!(LocSys
restr,−)⊗ Id)(E I

V ⊗ F )

from Rep(Ǧ)⊗I → QLisse(X)⊗I.

In particular, we can take the collection of such functors given by cohomology of shtukas. This
produces the desired object. There is some sleight of hand here: the actual objects we got lived in
QLisse(XI), not QLisse(X)I. Fortunately for us, these are isomorphic.

We are not yet done: we have a quasicoherent sheaf on the wrong stack. We need to figure out how to
descend these.

Lemma 2.3. The data of an isomorphism F ≃ i∗F where i : LocSysarithm → LocSysrestr is
the natural map is equivalent to the structure of partial Frobenii on the functors

V 7→ (Γ!(LocSys
restr,−)⊗ Id)(E I

V ⊗ F )

from Rep(Ǧ)⊗I → QLisse(X)⊗I.

By construction, we took these to arise from ShtI,V. These are equipped with partial Frobenii (as we
know from number theory), so we actually get a sheaf DrinfSht on LocSysarithm.

This sheaf acts as a sort of universal shtuka, as it assembles all shtukas into a single object and allows
us to recover them through the tautological objects E I

V. Moreover, note that if I put I = ∅ and V as
the trivial representation, I get Functc(BunG(Fq)) = Autom. In particular, global sections of this
sheaf give us unramified automorphic forms.



4 SHTUKAS

3. Trace and Drinf

Let us now define another sheaf, called Drinf . We will define objects

S̃htI,V ∈ QLisse(XI)

by considering the Hecke functors

H(V,−) : ShvNilp(BunG) → ShvNilp(BunG)⊗ QLisse(XI).

Now precomposing with Frob∗, we obtain a functor

F : C → C⊗D

where C = ShvNilpBunG and D = QLisse(XI). As ShvNilp(BunG) is dualizable, we obtain a cate-
gorical trace of this functor F as

VectQℓ
→ C∨ ⊗C → C∨ ⊗C⊗D → D.

This construction results in S̃htI,V ∈ QLisse(XI).

This produces a sheafDrinf onLocSysrestr. However, if we want to see it actually descends toLocSysarithm,
it is better construct it directly as an enhanced trace.

We define
Drinf := TrenhFrob∗,QCoh(LocSysrestr)(Frob∗, ShvNilp(BunG)).

This is a 2-categorical construction called enhanced trace, where we are regarding ShvNilp(BunG) as a
module category over QCoh(LocSysrestr). First, to the pair (Frob∗,QCoh(LocSysrestr)) we associate
the trace

Tr(Frob∗,QCoh(LocSysrestr)) ≃ QCoh(LocSysarithm).

Let me explain what this means. In general, given a symmetric monoidal category A with endofunctor
FA, define

Tr(FA,A) := FA ⊗A⊗Aop A

where we view the endofunctor FA as an A⊗Aop-bimodule category (precisely, A with an action on
one side twisted by FA). For the previous pair, the result of this construction is QCoh(LocSysarithm).

Now to the pair (Frob∗, ShvNilp(BunG)), using thatShvNilp(BunG) is a module category overQCoh(LocSysrestr),
we can associate a class in this Hochschild homology which is going to be Drinf .

For the construction of this class, let us move to the general setting where we have pairs (A, FA) and
(M, FM) where M is a dualizable module category over a rigid symmetric monoidal category A and
the second part of the pairs is an endofunctor (which is symmetric monoidal in the case of A). We ask
for a compatibility datum, namely that the diagram

A⊗M M

A⊗M M

FA⊗FM FM

commutes. Viewing a module category as a 1-morphism

T : DGCat → A−Mod

this data is a natural transformation

α : T ◦ id → FA ◦ T.



SHTUKAS 5

In such a situation, categorical constructions provide us with a morphism

Tr(id,DGCat) → Tr(FA,A−Mod).

That is, a morphism from Vect → Tr(FA,A−Mod); we get an object.

With our given pairs, this is the class in Tr(Frob∗,QCoh(LocSysrestr)) ≃ QCoh(LocSysarithm) we
want to associate.

One can prove that we recover S̃htI,V in the following way.

Theorem 3.1. The sheaf Drinf ∈ QCoh(LocSysarithm) has the property

(Γ(LocSysarithmǦ ,−)⊗ Id)(Drinf ⊗ E I
V) ≃ S̃htI,V

Here, by abuse of notation we write E I
V for the restriction to LocSysarithm. This result shows that

these sheaves in QLisse(XI) are equipped with partial Frobenii, which means that if we had done the
original construction we would be able to descend it to LocSysarithm. Note here that we also use Γ, as
here the stack ends up being quasicompact (although this is nontrivial to show).

4. A (fixable) fake proof

The following is now a theorem:

Theorem 4.1. There is a canonical isomorphism

Drinf ≃ DrinfSht

in QCoh(LocSysarithm).

Remark 4.2. Once we have this isomorphism, using the tautological objects E I
V on both must

produce the same results. We know that Drinf gives S̃htI,V, and for DrinfSht this gives ShtI,V.
We know we get ShtI,V on LocSysrestr, and the partial Frobenii descend it to LocSysarithm and
E I,arithm
V extracts the same element of QLisse(XI).

The canonical identification of these gives the trace conjecture.

This is a nontrivial result, but I’d like to explain why you should believe these quasicoherent sheaves
on LocSysarithm are isomorphic following Gaitsgory’s argument.

This argument crucially assumes we live in a simpler world that allows

Shv(BunG × BunG) ≃ Shv(BunG)⊗ Shv(BunG).

This is not actually true, and one needs to use ShvNilp instead to make this work. The correct argument
also uses a self-duality of ShvNilp(BunG) instead of Shv(BunG), which is also more difficult. Both of
these results need Beilinson’s spectral projector to be done correctly.

We will pretend the following are true:

• Shv(BunG × BunG) ≃ Shv(BunG)⊗ Shv(BunG).



6 SHTUKAS

• LocSysrestr is a quasicompact algebraic stack (I think we don’t actually need this; it’s just to
avoid Γ! for the self-duality). In Gaitsgory’s argument he actually pretends that all étale local
systems assemble into an algebraic stack, but we don’t need to go this far in our assumptions.

• Redefine Drinf := TrenhQCoh(LocSysrestr)(Frob
!, Shv(BunG)), so we can still get compactly sup-

ported functions on BunG(Fq) on global sections. In particular, we want to get

Tr(Frob!, Shv(BunG)) = Functc(BunG(Fq))

for the usual trace.

The argument I’ll explain follows essentially the same overall structure as the correct one, just with
less technical details as we are allowed to make these assumptions.

The basic idea is that both Drinf and DrinfSht satisfy

Γ(LocSysarithm, EV,x ⊗ F ) ≃ H•(BunG ×Frob∗,BunG×BunG Heckex,S ′
V).

For DrinfSht, this is by definition in our setting.

Here, EV,x is originally produced on LocSysrestr by using the inclusion of a rational point x → X,
and the representation V of Ǧ gives us an element in QCoh for Ǧ-local systems on x. We then restrict
to get the desired sheaf. The sheaf SV′ is given by geometric Satake, and originally lives on the Hecke
stack at x before we pull it back to the fiber product.

This property uniquely characterizes a sheaf inQCoh(LocSysrestr). Indeed, given any sheaf the functor
Γ(LocSysarithm,−⊗F ) gives a functor to Vect. Then canonical self-duality gives us a corresponding
object, which is then F . Since EV,x generate (by this I mean everything can be written as colimits
involving them, which suffices if we want a cocontinuous functor to use duality on), this describes the
entire functor.

Let’s see this for Drinf . The first thing to note is that Γ(LocSysarithm, EV,x ⊗ Drinf) : Vect → Vect
can be decomposed further by first unraveling the definition of Drinf : Vect → QCoh(LocSysarithm).

Notation. In the following we will be abbreviating Shv(BunG) as D(BunG), and will just write
LocSys for the restricted version. This is mostly just so things have a remote chance of fitting on
a page.

The idea is that if we have defined this via enhanced trace, we are realizing QCoh(LocSysarithm) as
Tr(Frob∗,QCoh(LocSys)). That is, we write it as

QCoh(LocSys)⊗Frob,QCoh(LocSys×LocSys),∆ QCoh(LocSys)

where the Frob means we use the graph of Frobenius for the map, and ∆ means we use the diagonal
for the map to take the tensor product over.

Further breaking down the definition of Drinf , the enhanced trace constructs an element of

Tr(Frob∗,QCoh(LocSys)) = QCoh(LocSysarithm).

via the compatibility datum of Frob! on Shv(BunG) as a module category over QCoh(LocSys). The
following is simply unwinding the definition of this element from the compatibility datum.

The first functor we’ll use to make Drinf is

Vect → D(BunG)⊗QCoh(LocSys) D(BunG)



SHTUKAS 7

via the unit of the self-duality datum of D(BunG) as a module category over QCoh(LocSys).

Then we follow this with an isomorphism

D(BunG)⊗QCoh(LocSys) D(BunG) ≃ (D(BunG)⊗D(BunG))⊗QCoh(LocSys×LocSys) QCoh(LocSys).

There is a map
Φ : (D(BunG)⊗D(BunG)) → QCoh(LocSys).

This is given by

Γ(LocSys, E ⊗ Φ(D1, D2)) := H•(BunG,Frob
!(D1)⊗! (E ∗D2)).

Canonical self-duality on LocSysrestr means this actually makes sense as a map, which again formally
follows from this being a reasonable stack.

Applying this map, we then have a map

(D(BunG)⊗D(BunG))⊗QCoh(LocSys×LocSys) QCoh(LocSys)

QCoh(LocSys)⊗Frob,QCoh(LocSys×LocSys),∆ QCoh(LocSys)

QCoh(LocSysarithm)

Φ

∼

To make the identification withQCoh(LocSysarithm)we have written it asTr(Frob∗,QCoh(LocSys)):
the last isomorphism is then using the definition of this trace via Hochschild homology.

This in total defines a functor
Vect → QCoh(LocSysarithm)

matching Drinf . We can then tensor with EV,x and take global sections to get the overall result
Γ(LocSysarithm, EV,x ⊗ Drinf) : Vect → Vect as a chain of simpler compositions.

Now note that starting at (D(BunG)⊗D(BunG))⊗QCoh(LocSys×LocSys) QCoh(LocSys) in this chain
of compositions, we can replace the rest of the compositions by

(D(BunG)⊗D(BunG))⊗QCoh(LocSys×LocSys) QCoh(LocSys)

D(BunG)⊗D(BunG)

QCoh(LocSys)

Vect

Φ

Γ(LocSys,EV,x⊗−)

This helps: taking the full composition from Vect → D(BunG)⊗D(BunG), this now is the absolute
unit of self-duality for BunG and breaks down as

Vect D(BunG) D(BunG × BunG) ≃ D(BunG)⊗D(BunG).
∆



8 SHTUKAS

where the first map corresponds to ωBunG (this is where Qℓ is sent; it is the dualizing sheaf or unit of
⊗! in the constructible setting). Thus,

Γ(LocSysarithm, EV,x ⊗ Drinf) : Vect → Vect

can be identified with

Vect D(BunG) D(BunG)⊗D(BunG) QCoh(LocSys) Vect∆ Φ

where the last map is Γ(LocSys, EV,x ⊗−), and we abuse notation with ∆ by using the isomorphism
D(BunG × BunG) ≃ D(BunG)⊗D(BunG).

In this, the only complicated map is Φ. However, its defining property makes this far easier, as we have
essentially given its definition by saying what it gives when composed with the map Γ(LocSys, EV,x⊗
−). Applying this, the final component becomes

D(BunG)⊗D(BunG) D(BunG)⊗D(BunG) D(BunG)⊗D(BunG)
Id⊗HV,x Frob! ⊗ Id

followed by ∆!
BunG

, which lands in D(BunG), and then H• to get to Vect. This is simply unwinding
the definition of Φ: the first part is using that EV,x ∗D2 is just the Hecke action, the second part gives
us the result Frob!(D1), and ∆! takes the shriek tensor product. Finally, H• completes the definition
of Φ.

At this point, we can now apply base change for the square giving the fiber productBunG×Frob,BunG×BunG

Heckex, now that we have reduced everything to

H•(BunG ×Frob,BunG×BunG Heckex,S ′
V) ≃ H•(BunG,∆

!(Frob! ⊗ HV,x)(∆∗ω)).

Thus, Drinf satisfies the desired characterization.

We can see F = DrinfSht also satisfies

Γ(LocSysarithm, EV,x ⊗ F ) ≃ H•(BunG ×Frob,BunG×BunG Heckex,S ′
V)

which is by definition in this setting. Thus, the two sheaves are isomorphic.


	1. Shtukas
	2. Construction of DrinfSht
	3. Trace and Drinf
	4. A (fixable) fake proof

