
THE PRO-ETALE TOPOLOGY FOR RIGID SPACES

1. The pro-etale topology

Let X be a rigid analytic space over a non-Archimedean field K . Recall that a rigid ana-
lytic space can be viewed as an adic space which is covered by affinoids which are topo-
logically of finite type.

Definition 1.1. A morphism X → Y of rigid analytic spaces is called étale if it is
locally of finite presentation and for any Huber pair (A,A+) and any ideal I ≤ A
with I2 = 0 we have a diagram

X Spa((A,A+)/I)

Y Spa(A,A+)

and there exists a unique map Spa((A,A+) → X making the diagram commute.
Here, (A,A+)/I is the Huber pair (A/I,A+/(A+ ∩ I)int).

This is meant to mimic the definition of formally étale. Note that you can make the same
definition for general adic spaces, but it will actually not agree with the étale site for a
perfectoid space.

If you look at the étale topology for a general adic space (e.g. a perfectoid space), one
defines finite étale morphisms on affinoids

(A,A+)→ (B,B+)

to be a morphism where A → B is finite étale with the induced topology and B+ is the
integral closure of A+.

A general étale morphism is a map f : X → Y such that for every point x ∈ X there’s
open neighborhoods U,V of x, f(x) and a factorization

U W

V

ι

f |U c

1
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where c is finite étale and ι is an open immersion. This agrees with the above definition
for rigid spaces. Observe the corresponding factorization in schemes only has c finite, and
not necessarily unramified.

Remark 1.2. The analogous factorization does hold for complex manifolds. You can
use small open balls.

With this, one defines the pro-étale site as follows.

Definition 1.3. LetXproét be the category whose objects consist of formal cofiltered
limits

U = lim←−Ui

where the Ui are rigid-analytic spaces étale over X. We ask that the transition maps
Ui → Uj commute with the maps to X, and are finite étale and surjective for i≫ j.
The morphisms are induced by viewing this as a subcategory of Pro(Xét).

Now we wish to put a Grothendieck topology on this category. We assign U as a topolog-
ical space

|U| = lim←−
i

|Ui|.

A covering is roughly then a family fα : Uα → U of pro-étale morphisms such that
the images of fα(|Uα|) cover |U|. To be entirely correct, we need some set theoretic
conditions but we will ignore these.

Observe that since an étale cover is a pro-étale cover, there is a natural morphism of sites

ν : Xproét → Xét.

We define
O+ = ν∗O+

X,ét.

We will typically study its p-completion Ô+.

Perfectoid spaces

Perfectoid spaces are objects in the larger category of adic spaces that contains rigid ana-
lytic spaces.

Let K be a perfectoid field. This means the following:

• The field K is nonarchimedean (of residue characteristic p) and not discretely
valued.

• We have |p| < 1.

• The p-power mapOK/p→ OK/p is surjective.



THE PRO-ETALE TOPOLOGY FOR RIGID SPACES 3

Let me attempt to explain these conditions via example. The first real example of a per-

fectoid field is K = ̂Qp(p1/p
∞). One has the following striking theorem:

Theorem 1.4 (Fontaine-Wintenberger, rephrased). There is an isomorphism

G ̂Qp(p1/p
∞

)
≃ G ̂Fp(t1/p

∞
)
.

Note that both of these are perfectoid fields.

Let us see how this arises, without actually giving a proof. The idea is that perfectoid fields
give rise to tilts K♭ which are characteristic p perfectoid field. Formally, these have

OK♭ = lim←−
x 7→xp

OK K♭ = lim←−
x 7→xp

K.

Componentwise multiplications make this a multiplicative monoid, but then deducing
the ring structure requires the perfectoid field axioms. There is a map

# : K♭ → K

sending x to its zeroth component. The previous example is of a perfectoid field and its
tilt. One can show finite extensions are perfectoid, and this tilting constructing induces
a bijection between finite extensions.

Scholze showed that this construction has a geometric generalization in adic spaces.

Definition 1.5. LetK be a perfectoid field containingQp. A topologicalK-algebra
R is perfectoid if the following conditions hold:

• R is uniform, so R◦ is bounded in R.

• R◦ is p-adically complete.

• There exists a pseudo-uniformizer ϖ ∈ R◦ such that ϖp|p and the p-power
map

R◦/ϖ → R◦/ϖp

is an isomorphism.

We can replace the last condition with R◦/p → R◦/p is a surjection, or that R◦/p is a
semiperfect Fp-algebra, in the case that ϖ exists. This is always the case if the algebra is
over a perfectoid field.

We call a Huber pair (R,R+) perfectoid affinoid if R is perfectoid.

Theorem 1.6 (Scholze). Spa(R,R+) is an adic space.
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This is actually nontrivial to show, since you need to verify that the Huber pair (R,R+) is
actually sheafy. The way this is done in the Scholze’s original paper it to prove that (R,R+)
is stably uniform, by showing the stronger claim that rational opens are perfectoid. Stable
uniformity implies that (R,R+) is sheafy.

The reason one typically cares about perfectoid spaces is the following theorem, which is
similar to what we saw before in the case of a field (but now much more difficult to prove).

Theorem 1.7 (Scholze). Let X = Spa(R,R+). Setting

R♭ = lim←−
x 7→xp

R

and similarly for R+♭, we obtain a tilted Huber pair (R♭,R+♭). Then we have

Spa(R,R+)ét ≃ (SpaR♭,R♭+)ét,

and moreover tilting induces a homeomorphism of the adic spectra.

The importance of this is that if one can reduce to studying perfectoid objects in some
argument, then via the tilting equivalence we can work in characteristic p.

In the context of Xproét, we can observe that the actual Ui in a formal cofiltered limit
are rigid analytic and cannot be perfectoid. However, we can interpret a formal filtered
colimit as a perfectoid space.

Definition 1.8. An affinoid perfectoid object in Xproét is a formal cofiltered limit
lim←−Ui where U = Spa(Ri,R

+
i ) such that

(R,R+) :=
(
( ̂lim−→R+

i )[1/p], (
̂lim−→R+

i )
)

is an affinoid perfectoid Huber pair.

We can now call an object U in Xproét perfectoid if it has an open cover by affinoid per-
fectoid V ⊂ U (here we use that quasicompact open subsets again give rise to objects in
Xproét).

Theorem 1.9 (Scholze, Colmez). Let X be a rigid analytic space over Spa(K,K+)
where K is a field containing Qp. Affinoid perfectoid objects in Xproét form a basis
for the topology.

Sketch. It suffices to do the case where X = Spa(A,A+). We want to produce a sequence
of finite étale extensions Ai/A which assemble into a perfectoid affinoid object in Xproét.
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Giving such a uniform construction suffices, since actually if X̃ = lim←−i
X̃i is perfectoid

in Xproét then for any V→ X̃ pro-étale we know V is perfectoid. We can assume V is an
inverse system of surjective finite étale morphisms with V0 = U. Indeed, we can factor
always as V → V0 → U where the last morphism is étale. But then it is locally built out
of rational subsets and finite étale covers (which preserve being perfectoid), so without
loss of generality we may take V0 = U.

To see this claim that V is perfectoid, we first note that in V = lim←−j
Vj , each Vj must

arise as a pullback of Vij → Ui which is finite étale, i.e. Vj = Vij ×Ui
U. Taking the

limit of these over i, we obtain a perfectoid space. Thus, V is perfectoid, since perfectoid
spaces are closed under completed cofiltered limits.

Hence, the covering of arbitrary U ∈ Xproét is given by the fiber product U×X X̃, as this
is pro-étale over U.

Some minor reductions allow us to assume A has no idempotents, and further that X lives
over an algebraically closed field. At this point, the actual construction is due to Colmez.
The idea is to take the Fp vector space

V = (1 + A◦◦)/(1 + A◦◦)p

where A◦◦ are the topologically nilpotent elements. Set A1 := lim−→S
AS over finite di-

mensional subspaces S ⊂ V. Given the preimage S̃ ⊂ (1 + A◦◦), we define

AS := A⊗Z[S̃] Z[S̃]

with the morphism being induced by [s] 7→ [sp]. We can think of this as formally adjoin-
ing pth roots of lifts of a basis of S. As each AS is finite étale (here we use characteristic
zero), they are again uniform Tate with A◦

S being the integral closure of A◦ in AS . Then
A1 is uniform.

Colmez calls the ith iterate of this construction Ai. These produce finite étale extensions,
and the completed colimit of these rings A∞ is perfectoid. Observe that

(1 + A◦◦
∞)/(1 + A◦◦

∞)p = lim−→
n

(1 + A◦◦
n )/(1 + A◦◦

n )p.

As transition maps here are all zero, it follows that elements in (1 + A◦◦
∞) are now all

p-power. Given a pseudouniformizer ϖ then setting xn = pn
√
1 +ϖ we have xn− 1 as a

psuedo-uniformizer with (xn − 1)p|p for n≫ 0.

We can also see that the p-power map

A◦
∞/(xn − 1)→ A◦

∞/(xn − 1)p

is surjective. □



6 THE PRO-ETALE TOPOLOGY FOR RIGID SPACES

Remark 1.10. We can characterize this construction as exactly the perfectoid Tate-
Huber pairs (R,R+) such that

log : 1 + R◦◦ → R

is a surjection.

Remark 1.11. If X is smooth over a perfectoid field (say K = Cp), it locally admits
an étale map to Tn = Spa(K⟨T±1

1 , . . . ,T±1
n ⟩, K+⟨T±1

1 , . . . ,T±1
n ⟩). As an adic

space, for example T1 has classical points that look like O×
Cp

so it behaves like a
circle (but still has thickness, because these still contain open balls).

We can explicitly make the cover in this case, via the perfectoid torus T̃n! This is ex-
plicitly given as an affinoid perfectoid object in the pro-étale site by the formal cofil-
tered limit of Spa(K⟨T±1/pm

1 , . . . ,T
±1/pm

n ⟩, K+⟨T±1/pm

1 , . . . ,T
±1/pm

n ⟩) (so when
we take the completed colimit of the rings, we get a perfectoid space; it is necessary
that K be perfectoid for this to happen).

More precisely, up to replacing X by an affinoid cover we have an étale map

X→ Tn.

Then X×Tn T̃n is the desired space pro-étale over X.

Condensed pro-étale cohomology

Given a rigid analytic space X, we will be interested in understanding how to compute
H•(Xproét, Ô+). Knowing that the pro-etale topology has a basis given by perfectoids, we
might consider a pro-etale affinoid perfectoid cover Ui → X. Then we want to appeal to
the following fact about cohomology of Ô+ on perfectoid affinoids:

Theorem 1.12. For i ≥ 1, the cohomology groups Hi(Uproét, Ô+) are almost zero
(so they are killed by ϖn for all n, where ϖn is an element so ϖpn

n = ϖ · u for
u ∈ (R◦)).

This means the cover allows us to almost compute H•(Xproét, Ô+). We have an almost
isomorphism

RΓ(Xproét, Ô+) ≃a Ô+(X)→
∏
i

Ô+(Ui)→
∏
i

Ô+(Ui ×X Uj)→ . . .

as by descent we would usually put RΓproét (where we have now replaced by H0, noting
that everything is affine).
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For future applications, it will be important to understand pro-étale cohomology of the
associated sheaf of condensed groups Ô+

cond. The construction of this condensed sheaf is
very simple: to U, we just take the associated condensed abelian group Ô+(U), where
here we use the topological abelian group structure. Note that this is a sheaf because the
assignment A 7→ A preserves limits (in particular equalizers).

We first note that there are two ways we could get an output for cohomology which lives
in D(Cond(Ab)): one way is to take the morphism

λ : Xproét → ∗proét
and define RΓcond(Xproét, Ô+) := Rλ∗Ô+. Then since it lands on the pro-etale site of
point and is valued in groups, we get a complex of condensed abelian groups.

Lemma 1.13. These constructions agree:

RΓcond(Xproét, Ô+) ≃ RΓ(Xproét, Ô+
cond).

Proof. This is relatively straightforward. Since we have a basis for the topology given by
affinoid perfectoids, it suffices to verify the claim there. In particular, we just need to
check that

λ∗Ô+ ≃ Ô+
cond(U).

On an affinoid U = Spa(R,R+), this actually only depends on R+ being p-adically
complete (which is true for perfectoid spaces).

Indeed, testing equality of these sheaves amounts to verifying that for a profinite set S we
have

H0(U× S, Ô+) = Ô+
cond(U)(S).

The right hand side is the same as Ccts(S,R
+). But then the other side is naturally

H0(U× S, Ô+) ≃

(
lim←−
i

Ccts(Si,R
+)

)∧

(p)

.

Now we can appeal to p-adic completeness of R+ to see this equals Ccts(S,R
+). □

As we saw in the introductory talk, it will be important to use the condensed machinery
to make sense of statements like

RΓ(Xproét, Ô+
cond) ≃ RΓ(Yproét, Ô+

cond)
hG

where Y is a pro-étale G-torsor for some profinite group G. This will become useful for
when we want to move between the Lubin-Tate and Drinfeld towers. The proof of this is
actually extremely straightforward: a crucial thing is that the map

G× Y → Y ×X Y
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sending (g, y) 7→ (y, gy) is an isomorphism. Then computing RΓ(Xproét, Ô+
cond) via

descent gives it as the totalization of

RΓ(Yproét, Ô+
cond) RΓ((G× Y)proét, Ô+

cond) . . .

This is the same as the totalization of the cosimplicial objectRHom(Z[G•],RΓ(Yproét, Ô+
cond)).

To see this, it suffices to check on the perfectoid basis for the underived version: we have
Ccts(S,R

+) = Hom(Z[S],R+). Then using that perfectoids form a basis and deriving
both sides, in general

RΓ((X× S)proét, Ô+
cond) ≃ RHom(Z[S],RΓ(Xproét, Ô+

cond)).

So we then apply this to the case of G. Once we have seen that the totalization of
RHom(Z[G•],RΓ(Yproét, Ô+

cond)) computes RΓ(Xproét, Ô+
cond) we are done, since the

first totalization is how one computes the homotopy fixed points (−)hG.

For applications involving condensed enhancements of comparison theorems involving
RΓ(Xproét, Ô+), it is extremely useful to understand the relation to classical pro-étale
cohomology.

Recall that we have a derived p-completion functor

Γ∗(−)∧p : D(Ab)→ D(Cond(Ab))

sending A 7→ R lim←−A/Lpn.

Remark 1.14. We call this Γ∗ because Γ∗ : D(Cond(Ab))→ D(Ab) evaluating on
a point is right adjoint to Γ∗. Note that both are exact functors, and so we can use
the same notation for their derived versions.

Theorem 1.15. Let X be a rigid affinoid space over a mixed characteristic non-
archimedean field. There is an isomorphism

RΓ(Xproét, Ô+
cond) ≃ (Γ∗RΓ(Xproét, Ô+))∧p .

Proof. First, we note that one can actually upgrade the previous construction of an affi-
noid perfectoid cover. This is because given an affinoid perfectoid space Spa(R,R+), we
can take a cofiltered limit of all affinoid étale covers of Spa(R,R+). Modulo set theo-
retic issues, this gives us a strictly totally disconnected perfectoid space which is pro-étale
over Spa(R,R+). The property of being strictly totally disconnected means that all étale
covers split (has a section) and that the space is quasicompact.
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Calling the strictly totally disconnected perfectoid space X̃, we have pro-étale covers

X̃→ Spa(R,R+)→ X

and hence we can localize to the totally disconnected perfectoid situation.

The advantage of this is that now we literally have Hi(X̃proét, Ô+) = 0 for i > 0. This can
be shown by observing that global sections in the étale topology are exact when we work
with a totally disconnected perfectoid space. Indeed, given a surjection of étale sheaves
f : F → G we see that given a global section s of G we see by definition there’s an
étale cover c : X̃′ → X̃ and a global section t ∈ F (X̃′) so f(t) = c∗s. But then c has a
section σ, which means that f(σ∗(t)) = s (we have σ∗f(t) = f(σ∗(t))). In particular, f
is surjective on global sections, as σ∗(t) is a global section of X̃.

We can compare the pro-étale and étale topology modulo p to obtain

RΓ(X̃proét, Ô+/pn) ≃ RΓ(X̃ét,O+/pn).

The latter is concentrated in degree zero, as global sections are exact in the étale topology
on a totally disconnected perfectoid space. In this setting, the exact same reasoning applies
for Ô+

cond verbatim: the argument we gave earlier also applies to condensed sheaves on X̃ét.

Now we are ready to apply descent. Observe that every term in the Cech nerve remains
strictly totally disconnected (roughly the reason is that fibres of a pro-étale perfectoid
cover over X̃ are profinite sets). Thus, applying descent one obtains explicitly that

RΓ(Xproét, Ô+
cond) ≃ lim

[n]∈∆
Ô+

cond(X̃
(n)).

Now by definition, we obtain

Ô+
cond(X̃

(n)) := Ô+(X̃(n)) ≃ Γ∗Ô+(X̃(n))∧p ,

where the last assertion holds since Ô+ carries the p-adic topology. The claim then follows.
□
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