
VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE

1. The main theorem

In this talk, I will be focusing on the classification of vector bundles on the Fargues-
Fontaine curve following the exposition in Fargues-Scholze.

First, we will need to construct some of the relevant vector bundles. Throughout, let E
be a finite extension of Qp with residue field Fq, ring of integers OE and a choice of
uniformizer π. We will also put C as an algebraically closed perfectoid field over Fq, and
denote XC,E as XC as E is implicit.

As a means for constructing vector bundles, we will use the category of isocrystals.

Definition 1.1. Let E/Qp, and put Ĕ = WOE
(Fq)[1/π] for the maximal unrami-

fied extension.

The category IsocE is the E-linear⊗-category with objects (V, φ) where V ∈ VectĔ
and φ : V ≃ V is a φĔ-semilinear isomorphism.

For λ = m/n ∈ Q for m,n coprime and n > 0, we set Vλ to be the isocrystal with
vector space Ĕn and semilinear automorphism

0 1

0
. . .
. . . 1

πm 0

φĔ.

There is a functor
IsocE → Vect(XC)

arising from the observation that

YC,E → Spa Ĕ

and the structure morphism is equivariant forφC acting onYC,E andφĔ acting on Spa Ĕ.
Indeed, this induces a pullback functor

IsocE = VectφĔ(Spa Ĕ)→ VectφC (YC,E).

But then by descent the latter is just Vect(XC).
1
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Definition 1.2. We setO(λ) to be the image of V−λ under this map, so thatO(1)
is ample.

We are now ready to state the main theorem.

Theorem 1.3 (Main theorem). There is a decomposition

E ≃
⊕
λ∈Q

O(λ)nλ

for any vector bundle E ∈ Vect(XC).

Recalling the functor

IsocE → Vect(XC)

sends V−λ 7→ O(λ), the Dieudonné-Manin decomposition

IsocE ≃
⊕
λ∈Q

IsocλE =
⊕
λ∈Q

Vλ ⊗ VectE

implies this functor is a bijection on isomorphism classes.

Remark 1.4. This generalizes to G-bundles and G-isocrystals. We can interpret a
G-torsor on XC as an exact ⊗-functor

RepQp
(G)→ Vect(XC).

Then understanding Vect(XC) sufficiently well, i.e. the previous decomposition,
produces a functor

RepQp
(G)→ Q− FilVB(XC)

HN,

the category of Q-filtered vector bundles on XC such that the λ ∈ Q component
Eλ is semistable of slope λ. It’s easy to check this is an exact ⊗-functor: exactness
follows from RepQp

(G) being semisimple, and we can use the previous classification
of vector bundles to check it is a ⊗-functor.

This allows us to produce an associated graded exact ⊗-functor

RepQp
(G)→ IsocQp ,

which is precisely the data of a G-isocrystal in B(G). To show this classifies the
isomorphism classes of vector bundles we just need to split the previous filtration,
which is done by computingH1(XC ,O(λ)) = 0 forλ > 0 so there are no extensions.
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2. Ampleness ofO(1)

In the last section, we definedO(1) to be the image of the isocrystalV−1 under the functor

IsocE → Vect(XC).

It will be important for the argument to verify thatO(1) is ample, or that E(n) is globally
generated and H1(E(n)) = 0 for n≫ 0.

The reason we care about this is that it will give an injection

OXC
(−d)→ E

for an arbitrary vector bundle. Indeed, a sufficiently large twist of E will then be globally
generated and in particular admit a section, so upon untwisting we get the desired map.

Theorem 2.1 (Kedlaya-Liu). Let S/Fq be an affinoid perfectoid space Spa(R,R+),
and let E be a vector bundle on XS,E. Then there is some n0 such that for all n ≥ n0

the vector bundle E(n) is globally generated and H1(XS,E, E(n)) = 0.

Sketch. The proof is quite complicated and technical, so we will only give the basic idea
of how to approach the question. We’ll focus on showing H1 vanishes.

Noting that the Frobenius φS multiplies the radius by q, so we can present

XS = YS/φ
Z = YS,[1,q]/(YS,[1,1] ∼ YS,[q,q]).

Here, YS,I is the open affinoid annulus rad−1(I) for the radius function

rad : |YS| → (0,∞).

Explicitly,
YS,[a,b] = {|π|b ≤ |[ϖ]| ≤ |πa|} ⊂ YS.

An immediate consequence of this presentation is that upon building a Čech complex
computing cohomology, one obtains

RΓ(XS, E) = [E(YS,[1,q])→ E(YS,[q,q])]

via φS − 1. By vanishing for affinoids, with no work we see H2 vanishes. To get H1 to
vanish, you need to check this map is surjective for a sufficiently large twist.

The Čech approach allows us to reduce this to a commutative algebra question: any E can
be written a finite projective BR,[1,q]-module M with an isomorphism on its base changes

φM : M[q,q] ≃M[1,1]

which is linear over φ.
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Kedlaya-Liu show that one can reduce to the case where M is free, and in this case φM is
given quite explicitly by

φM = A−1φ

for A ∈ GLm(BR,[1,1]). Under this description of a vector bundle, a twist by O(1)
amounts to sending A 7→ Aπ (recall π is the uniformizer for E; we use ϖ for perfec-
toid spaces). Once this setup is done, Kedlaya-Liu manually check global generation by
producing explicit elements and verify φ − A is surjective after an appropriate twist to
manipulate the matrix entries.

More precisely, they show that for 1 < r ≤ q rational there are m elements

v1, . . . , vm ∈ (Bm
R,[1,q])

φ=A = H0(XS, E)

which form a basis of Bm
R,[r,q]. Applying this to enough strips proves global generation,

and one proves this by showing φ−A is surjective in an effective way, that is one can pick
preimages for φ−A : Bm

R,[1,q] → Bm
R,[1,1] such that the preimage has a small spectral norm

on Bm
R,[r,q]. Kedlaya-Liu provide a convergent procedure to produce these preimages, and

then pick vi = [ϖ]Mei − v′i as small perturbation of the standard basis to land in the
φ = A invariants. Here, v′i is chosen so (φ−A)(v′i) = (φ−A)([ϖ]Mei) (thus landing in
the φ = A fixed points) but has a sufficiently small norm on Bm

R,[1,q] so that these remain
a basis. □

3. The HN formalism

We will begin by recalling what the Harder-Narasimhan formalism is for a curve X/C.

Definition 3.1. Let E be a vector bundle on a smooth projective curve X/C. We
define the slope of E to be λ = deg(E)/rank(E) ∈ Q.

A vector bundle is semistable if any proper nonzero subbundle E ′ has λ(E ′) ≤ λ(E).

Theorem 3.2. Let E be a vector bundle on a smooth projective curve X/C. Then
there exists a unique filtration

0 = E0 ⊂ . . . ⊂ Er = E
such that all subquotients Fi = Ei+1/Ei are semistable and slopes of Fi decrease as
the index i increases.

As it turns out, an extremely similar formalism can be defined on the Fargues-Fontaine
curve XC . The non-obvious part of the definition of a slope is defining the degree, which
requires us to determine the line bundles.
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Proposition 3.3. Let S# be a characteristic zero untilt lying over E∞, the com-
pletion of the maximal abelian extension of E. Then there is an exact sequence of
OXS

-modules

0 O O(1) OS# 0.

Sketch. This is used several times, so I will explain how to write down the maps.

Providing a mapO → O(1) amounts to taking the data of an untilt S# and then provid-
ing a section s ∈ H0(XS,E,OXS,E

(1)). Using a slight modification of the Čech covering
we used to showO(1) is ample, we can identify

H0(XS,E,OXC,E
(1)) = O(Y[1,∞])

φ=π

where Y[1,∞] = {|[ϖ]| ≤ |π| ≠ 0} ⊂ SpaWOE
(S+). Note that this is not contained in

Y. Using the fact that Frobenius scales the radius function by q, we can further identify

O(Y[1,∞])
φ=π = (B+

cris)
φ=π.

Now apply Scholze-Weinstein Theorem A: the Dieudonné functor on semiperfect rings is
fully faithful. We obtain

H0(XS,E,OXs,E
(1)) = HomOE

(E/OE,G(S#+/π))[1/π] = G̃(S#+/π) = G̃(S#+)

where G ≃ SpfOE[[X]] is the Lubin-Tate formal group of E and Ẽ = lim←−×π
G ≃

SpfOE[[X̃
1/p∞ ]] is the universal cover. In particular, the first identification we use the

p-divisible group E/OE and identify G(S#+/π) with the points of the associated p-
divisible group (by taking the p-adic Tate module for the formal group).

With this machinery in place, so long as our untilt lies over E∞ we can produce a distin-
guished element of G̃(C#,+) via the map

Vπ(G)→ G̃

where Vπ is the rational π-adic Tate module. This arises by taking universal covers on⋃
n G[πn] → G. Given an untilt C#/E∞, we can produce an element of Vπ which we

use for the section.

The final map is just evaluation at C#. Exactness ends up being possible to reduce to C#

to the universal case of E∞ where it can be checked directly. □

Proposition 3.4. Let x be a characteristic zero untilt. The scheme Xalg
C − [x] is

affine, and the spectrum of a PID.

Now we can prove the following.
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Proposition 3.5. We have
Z ≃ Pic(XC)

via n 7→ O(n).

Proof. First, by GAGA we may instead consider the algebraic curve. The corollary shows
any vector bundle on Xalg

C is trivialized on Xalg
C − [x], so any vector bundle is of the

form O(n[x]). Here we are appealing to the fact that the local ring at x is a DVR, so by
Beauville-Laszlo gluing we have

Pic(Xalg
C ) ≃ Pic(Xalg

C − [x])×Pic(D◦
x) Pic(Dx)

where Dx = ÔXC ,x and D◦ punctures this. Knowing the local ring is a DVR, we get Z.
For example, if we had Cp[[t]] we look at Cp[[t]] lattices in Cp((t)), which are classified
by tn. In general if R is a DVR with fraction field K these are going to be classified by
K×/R×, or the value group, which is Z.

As this point, we already know Pic(XC) ≃ Z, but the isomorphism is not canonical.

It suffices to showO([x]) ≃ O(1) for any untilt x = Spa(C♯, C♯,+) to make the isomor-
phism canonical.

To see this look at the previous exact sequence

0 OXC
OXC

(1) OC# 0.

This means that the mapOXC
→ OXC

(1) factors through the twisted ideal sheaf I[x](1),
and by exactness it is an isomorphism as I[x](1) = ker(OXC

(1)→ OC#).

Observe I[x] is justO(−[x]). As we just argued that

I[x](1) ≃ OXC

so in particularO(−[x]) ≃ OXC
(−1) by untwisting. Taking duals, the claim follows. □

Definition 3.6. Let E be a vector bundle on XC . We define deg(E) = deg(det E),
where deg is the isomorphism Pic(XC)→ Z.

Then we set the slope λ to be the degree over the rank.

One can axiomatize a Harder-Narasimhan formalism and verify the axioms hold to deduce
that it holds for XC given this definition of a slope. This can be generalized, but the
definition below is sufficient.
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Definition 3.7 (Abstract HN formalism). An abstract HN formalism consists of a
quasi-abelian category C equipped with degree and rank functions |C| → Z≥0 which
are additive on exact sequences.

Remark 3.8. If X = SpecR is a scheme, generally Vect(X) is not quasi-abelian
since we don’t need to have kernels and cokernels (the third condition is that Ext is
bifunctorial). But in the case that R is a Dedekind domain, like with a curve, this is
true.

It’s easy to check rank and degree are additive in short exact sequences. For rank this is
clear, and for degree we just take determinant bundles: the determinant functor factors
through K0(Vect(XC)), so in particular for an exact sequence 0→ E1 → E2 → E3 → 0
we obtain det(E2) ≃ det(E1)⊗ det(E3), and hence the degree is additive.

We then obtain the following corollary.

Corollary 3.9. The schemeXalg
C has a Harder-Narasimhan formalism. That is, The-

orem 3.2 holds verbatim with the definition of semistable being the same.

Remark 3.10. The vector bundle O(λ) is always stable of slope λ, and O(λ)n is
always semistable of slope λ, or lies in Vectλ(XC,E).

Remark 3.11. If E ≃
⊕

λ∈QO(λ)nλ , the slope of E is the nλ-weighted average of
the λ’s that appear.

4. Reductions for the main theorem

Having now established the Harder-Narasimhan formalism on Vect(XC), we will be able
to reduce the desired classification theorem to the case of semistable vector bundles and
further to semistable slope 0 vector bundles. The triviality of semistable slope 0 vector
bundles will be the most difficult part.

Proposition 4.1. The cohomology group

H1(XS,OXS
(λ))

is trivial for λ ∈ Q>0. In particular, Ext1(O(λ),O(λ′)) = 0 when λ > λ′.
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Proof. This can be proven directly. First, we make a small reduction: if λ = s/r, replacing
E with a degree E extension gives a covering f : XS,E′ → XS,E of the curve where
f∗O(s) = O(s/r). Then it suffices to show vanishing for H1 ofO(n).

Recalling the module setup used to prove H1(XC , E(n)) = 0 for n≫ 0, the correspond-
ing object forO(n) is a free rank 1 module M over BC,[1,q] equipped with

φM = A−1φ : M[q,q] →M[1,1].

Here A is an automorphism of BR,[1,1]. Recall that using this presentation of XS we get
H0 as the φ = A invariants, since we need M[q,q] and M[1,1] to be identified. For higher
cohomology we look at the derived invariants.

Since twisting corresponds to multiplication by π, we’re looking at A = πn. To get H1

to vanish we’ll need to show

φ− πn : BC,[1,q] → BC,[1,1]

is a surjection.

This can be done fairly directly, without the more involved methods Kedlaya-Liu used for
surjectivity. Any element ofBC,[1,1] has a decomposition intoBC,[0,1][1/π] and [ϖ]BC,[1,∞].
Here,

YC,[0,1] = {|π| ≤ |[ϖ]| ≠ 0}
and [1,∞] does the reverse; [1, 1] asks for equality, which is why we have the decomposi-
tion.

Assume f ∈ BC,[0,1]. Then

g = φ−1(f) + πnφ−2(f) + π2nφ−3(f) + . . .

converges inB[0,q]. Then g is an explicit preimage for f ; similarly this works forBC,[0,1][1/π].
For [ϖ]BC,[1,∞] we use

g = −π−nf − π−2nφ(f)− . . .

which converges in BC,[1,q]. Thus, we get explicit preimages.

To see the second claim, suppose we have an extension

0 O(λ) E O(λ′) 0.

Then H1(XC ,O(λ)⊗O(λ′)∨) parameterizes extensions. To see this is 0, it suffices to see
H1(XC ,O(λ− λ′)) = 0. This is precisely what the first claim says. □

Proposition 4.2. We have

Ext1(OXC
(λ),OXC

(λ)) = 0
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for any λ ∈ Q.

Proof. As seen in the previous proposition, this amounts to H1(XC ,O) vanishing.

We can again appeal to the exact sequence

0 OXS
OXS

(1) OS# 0

for an untilt. In this case after taking cohomology we get

H0(XS,OXS
(1)) S# H1(XS,OXS

)
log

where the first map is given by the logarithm map

G̃(S#+)→ G(S#+)→ S#

where G is the Lubin-Tate formal group and G̃ is the universal cover. Once we have iden-
tified G̃(S#+) with global sections of O(1) via Scholze-Weinstein theorem A, Lemma
3.5.1 shows compatibility with the quasilogarithm. Unwinding definitions shows explic-
itly what the map to S# is, and this map is pro-étale locally surjective with kernel E. This
shows H1(XC ,O) vanishes pro-étale locally, but it’s already a sheaf so it just vanishes. □

Corollary 4.3. To deduce E ≃
⊕

λ∈QO(λ)nλ for any E ∈ Vect(XC,E), it suffices
to prove any semistable slope 0 vector bundle admits an injective mapO → E .

Proof. We argue by induction on the rank. Having computed Pic(XC) ≃ Z via n 7→
OXC

(n), we know the rank one case is done.

Next, suppose the theorem is proven for rank n and let E be of rank n + 1. If E is not
semistable, then looking at the HN filtration

0 = E0 ⊂ . . . ⊂ Er = E
we know r − 1 ̸= 0. Thus, we look at Er−1, knowing that E/Er−1 is a semistable vector
bundle. That is, we obtain an extension

0 Er−1 E E/Er−1 → 0,

where by induction on both sides the vector bundles are a direct sum of O(λ)′s (and on
the right, only the minimal slope λ). The first proposition then suffices to show E is a
direct sum ofO(λ)’s.
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Thus, we are reduced to the case where E is semistable of slope λ. By the second proposi-
tion, to deduce the claim amounts to producing an injective map

O(λ)→ E

since the category of semistable slope λ vector bundles is abelian (this is true in a general
Harder-Narasimhan formalism); by applying the induction hypothesis, we see E is an
extension ofO(λ) andO(λ)rank(E)−1, which is necessarily trivial.

Finally, we reduce to the semistable slope 0 case. Let λ = s
r
, and put E′ as the unramified

degree r extension of E. Consider the degree r covering

f : XC,E′ → XC,E.

ThenO(λ) = f∗O(s), so by adjunction we need a nonzero map

OXC,E′ (s)→ f ∗E .

Then by twisting we reduce to the slope 0 case. □

Thus we are left with proving the following theorem, which is where the technical details
hide.

Theorem 4.4. Let E ∈ Vect(XC,E) be semistable of slope 0. Then there exists an
injective map

OXC,E
→ E .

5. Diamonds and the v-topology

To prove this final reduction, we will need some preliminary definitions. I will assume
familiarity with adic and perfectoid spaces.

The first result is a useful motivational theorem.

Theorem 5.1 (Scholze). LetX/Qp be a rigid analytic variety. Then perfectoid spaces
over X form a basis for the proétale topology.

For example, if X is “small” in the sense that there is an étale map X → Tn, we can use
the perfectoid torus T̃n to give a proétale cover.

In fact, this is even more strongly the case: picking a proétale cover X̃ which is perfectoid,
we have

X = Coeq(X̃×X X̃ X̃)
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in the category of analytic adic spaces.

Now observing this is a coequalizer of perfectoid spaces, the idea is that the diamond X⋄

should generalize the tilting construction to rigid analytic spaces over Qp. Indeed, once
we have this presentation the assignment

X 7→ X⋄

should forget the structure map to SpaQp by taking such a coequalizer presentation and
tilting the perfectoid spaces.

This is made precise with the following definitions.

Definition 5.2. Let Perf be the category of all characteristic p perfectoid spaces. A
diamond D is a proétale sheaf on Perf such that

D = X/R

where X ∈ Perf and R ⊂ X×X is an equivalence relation such that the projections
onto each copy of X are proétale.

Theorem 5.3 (Scholze). The category of diamonds has all products, fiber products,
and quotients by pro-étale equivalence relations.

Remark 5.4. We’re using that the absolute product of characteristic p perfectoid
spaces is again perfectoid.

ToX/ SpaQp a rigid analytic space, using the previous coequalizer presentation we’d like
to write

X⋄ = Coeq((X̃×X X̃)♭ X̃♭).

This doesn’t literally make sense in adic space, but in the category of diamonds is does by
definition. Indeed, if one interprets (−)♭ on a perfectoid space to mean the proétale h(−)♭

given by the Yoneda embedding, this can be interpreted as a coequalizer in the category
of diamonds. This now exists by construction.

However, it’s unclear that this construction is independent of choices. A better construc-
tion is the following.



12 VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE

Definition 5.5. Let X/ SpaQp be a rigid analytic space. The presheaf X⋄ on Perf
is given by

S 7→ {(S#, S# → X)}.
Here, S# is a characteristic zero untilt.

Remark 5.6. If X is perfectoid and we try this, we get the sheaf for X♭ under the
Yoneda embedding for Perf . This is because PerfdX ≃ PerfdX♭ .

Remark 5.7. We have YS,E = S × (SpaE)⋄, and XS,E = S/φZ × (SpaE)⋄.

Theorem 5.8 (Scholze). The presheafX⋄ is a proétale sheaf onPerf , and furthermore
is a diamond. The following hold when X/K is a smooth rigid analytic space over a
p-adic field:

• The functor
X 7→ (X⋄,X⋄ → SpaK⋄)

is fully faithful.

• We can recover |X| through a presentation of the diamond via a perfectoid
proétale cover X̃ to obtain a proétale equivalence relation R = X̃×X X̃. One
has |X| = |X̃|/|R|.

• The category X⋄
ét of diamonds étale over X⋄ recovers the usual site Xét.a

aOne defines the diamond siteX⋄
ét by saying f : G → F is étale if forY → F perfectoid the pullback

G ×F Y is representable by a perfectoid space étale over Y.

We will also need to make use of a related concept called the v-topology on Perfd (we now
use all perfectoid spaces).

Definition 5.9. The v-topology on Perfd is the Grothendieck topology generated
by open covers and all surjective maps of affinoids.

Initially it seems nothing could possibly be a sheaf for the v-topology, but actually many
useful things are, including all diamonds.
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Theorem 5.10 (Scholze). Any diamond is a v-sheaf (regarded on Perf).

Remark 5.11. Noting the similarity of the definition of a diamond and an algebraic
space, this mirrors the result that algebraic spaces are automatically fpqc sheaves.

6. Proof of the main theorem

Recall that we proved thatE ∈ Vect(XC) admitting a decompositionE ≃
⊕

λ∈QO(λ)nλ

is implies by the following theorem, which we will now go ahead and prove.

Theorem 6.1. Let E ∈ Vect(XC,E) be semistable of slope 0. Then there exists an
injective map

OXC,E
→ E .

Proof. We will break this proof up into several steps:

• Show that we can replace C by an extension.

• Show that after extending C , there exists d ≥ 0 such that

OXS
(−d)→ E

is injective.

• Reduce ruling out d ≥ 2 to the key lemma.

• Reduce ruling out d = 1 to the key lemma.

• Prove the key lemma.

Step 1. Suppose the claim is true over C ′/C . Considering the v-sheaf

S ∈ PerfdC 7→ {ES ≃ On
XS
},

observe that since Γproét(S,E) ≃ Γ(XS,OXS
) this is a v-quasitorsor for GLn(E). In-

deed on S, any continuous map |S| → GLn(E) yields an automorphism of En(S) =
Homcont(|S|,En). Hence we obtain an action ofGLn(E)(S) onΓproét(S,E

n) ≃ Γ(XS,On
XS

),
which gives the desired action. This is only a quasitorsor because we lack v-local triviality.

If the claim is true over C ′, then over C ′ there’s a nonzero section (trivializing E). This
implies that over C we get an actual v-torsor, as we can deduce the v-local trivialization
condition by the fact that SpaC ′ → SpaC is a v-cover.

Then in Scholze-Weinstein’s Berkeley lectures it was shown any such GLn(E)-torsor is
representable by a perfectoid space pro-étale over SpaC (since GLn(E) is locally profi-
nite). This implies the torsor admits a section over C , so the claim follows.
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Step 2. This is where we use thatOXC
(1) is ample! LetL be the sub line bundle of maximal

degree. Since E is semistable of slope zero, the degree ofL is≤ 0. Thus, ifL simply exists,
we obtain an injectionOXS

(−d)→ E . In particular, all we need is for E to admit a global
section after a twist. This indeed is the case by ampleness. Once we know E admits a sub
line bundle, we can just take the maximal degree one.

Introduction of the key lemma. If d = 0, we are done. We will reduce cases where
d > 0 to the key lemma below, which gives a global section and hence the desired map
OXC,E

→ E . We use step (1) to be able to take the extension to satisfy this hypothesis.

Lemma 6.2 (Key lemma). Let

0 OXC
(−1) E OXC

(1/n) 0

be an extension of vector bundles with n ≥ 1. Then after taking some extension of
C , E admits a global section.

Step 3. The idea is that having d ≥ 2 contradicts minimality of d if we assume the key
lemma. Since we chose the minimal d, F = E/O(−d) is again a vector bundle. It has
rank ≤ n− 1, degree d and positive slope.

Thus, using the main theorem inductively, we’ll get an injection O(−d + 2) → F since
O(−d+2) has maps toO(λ) for any λ ≥ 0 (recall we made a mapO → O(1), hence to
O(n), andO(λ) by changing E). If d = 1, it’s possible F = O(1/(n− 1)) and we won’t
get a map fromO(1) (unless n = 2; in many notes one skips straight to ruling out d ≥ 1
by assuming this).

Now we apply this injection. Pulling back

0 O(−d) E F 0

by the morphism induces an extension

0 O(−d) G O(−d− 2) 0.

By the key lemma, after twisting to get an extension of O(−1) and O(1) after enlarging
C we obtain an injectionO → G(d− 1), and hence an injection

O(−d+ 1)→ G → E
contradicting minimality.

Step 4. Suppose that in step 2 we obtained d = 1. We then get an extension



VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE 15

0 O(−1) E F 0

where F has rank ≤ n − 1, degree 1, and slope ≥ 0. Via induction we can apply the
classification theorem, telling us

F ≃ Oi ⊕O
(

1

n− 1− i

)
.

If i = 0, by the key lemma we are done. If i ̸= 0, then pick a mapO → F and pull back
by this. Then we can apply the classification theorem on the pullback E ′ of E by the map,
deducing that we have an injectionO → E ′ → E .

Step 5. It remains to prove the key lemma. We’re given an extension

0 OXC
(−1) E OXC

(1/n) 0

and wish to show after taking an extension of C that E admits a global section. To avoid
introducing details about diamonds, I will only give a brief sketch of the idea here. Taking
cohomology of this exact sequence, we obtain an injection

BC(O(1/n))→ BC(O(−1)[1])
of Banach-Colmez spaces.

One can show that BC(O(1/n)) is a perfectoid disk D̃C and

BC(O(−1)[1]) ≃ (A1
C#)

⋄/E.

However, we can argue that after base extension to C ′/C

D̃C → (A1
C#)

⋄/E

is necessarily surjective, implying the map is an isomorphism. Indeed, the image hits a
non-classical point (in the target classical points are totally disconnected, but the source
is connected and not a point); this means after base extension the image contains a non-
empty open subset of the diamond BC(O(−1)[1]).

That is, the image of the map contains an open neighborhood of the origin of the afine line
in (A1

C#)
⋄ after base extension, which due to the scaling action of E× implies surjectivity.

But this cannot be the case, as it would imply the map is an isomorphism. The target
BC(O(−1)[1]) is not representable but the source is by a perfectoid disk, and repre-
sentability is by definition preserved under isomorphisms of diamonds.

Remark 6.3. Given that this decomposition holds for isomorphism classes, it’s a
natural question to ask what exactly the difference in the categories is conceptually.
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The easy answer is that some morphisms are different: in isocrystals,Hom(V0,V−1) =
0 but Hom(O,O(1)) is nonempty (as we saw with the exact sequence!).

However, there is a more interesting answer that drops any reference to isocrystals:
it turns out with a modification of the curve to an “absolute curve”, we literally get
an equivalence. We can contemplate the category

BunFF(X)

for any v-stack X of morphisms of v-stacks X→ BunFF.

By a recent theorem of Anschütz, for Spa k⋄ (k = Fq) we actually obtain

IsocĔ ≃ BunFF(Spa k
⋄).

One should think of this as “vector bundles on the absolute curve Xk,E”, even though
such an object doesn’t literally exist. The difference between the two categories
then has to do with the difference between Vect(Xk,E) := BunFF(Spa k

⋄) and
Vect(XC,E).

□
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