#### VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE

## 1. The main theorem

In this talk, I will be focusing on the classification of vector bundles on the Fargues-Fontaine curve following the exposition in Fargues-Scholze.

First, we will need to construct some of the relevant vector bundles. Throughout, let E be a finite extension of  $\mathbf{Q}_p$  with residue field  $\mathbf{F}_q$ , ring of integers  $\mathcal{O}_E$  and a choice of uniformizer  $\pi$ . We will also put C as an algebraically closed perfectoid field over  $\mathbf{F}_q$ , and denote  $X_{C,E}$  as  $X_C$  as E is implicit.

As a means for constructing vector bundles, we will use the category of isocrystals.

DEFINITION 1.1. Let  $E/\mathbf{Q}_p$ , and put  $\check{E} = W_{\mathcal{O}_E}(\overline{\mathbf{F}}_q)[1/\pi]$  for the maximal unramified extension.

The category  $\mathsf{Isoc}_E$  is the E-linear  $\otimes$ -category with objects  $(V, \varphi)$  where  $V \in \mathsf{Vect}_{\check{E}}$  and  $\varphi : V \simeq V$  is a  $\varphi_{\check{E}}$ -semilinear isomorphism.

For  $\lambda = m/n \in \mathbf{Q}$  for m, n coprime and n > 0, we set  $V_{\lambda}$  to be the isocrystal with vector space  $\check{\mathbf{E}}^n$  and semilinear automorphism

$$\begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ \pi^m & & 0 \end{pmatrix} \varphi_{\check{\mathbf{E}}}.$$

There is a functor

$$\mathsf{Isoc}_{\mathrm{E}} o \mathsf{Vect}(\mathrm{X}_C)$$

arising from the observation that

$$Y_{C,E} \to \operatorname{Spa} \check{E}$$

and the structure morphism is equivariant for  $\varphi_C$  acting on  $Y_{C,E}$  and  $\varphi_{E}$  acting on Spa E. Indeed, this induces a pullback functor

$$\mathsf{Isoc}_{\mathrm{E}} = \mathsf{Vect}^{\varphi_{\breve{\mathrm{E}}}}(\mathrm{Spa}\,\breve{\mathrm{E}}) \to \mathsf{Vect}^{\varphi_{C}}(\mathrm{Y}_{C,\mathrm{E}}).$$

But then by descent the latter is just  $Vect(X_C)$ .

DEFINITION 1.2. We set  $\mathcal{O}(\lambda)$  to be the image of  $V_{-\lambda}$  under this map, so that  $\mathcal{O}(1)$  is ample.

We are now ready to state the main theorem.

THEOREM 1.3 (Main theorem). There is a decomposition

$$\mathcal{E} \simeq \bigoplus_{\lambda \in \mathbf{Q}} \mathcal{O}(\lambda)^{n_{\lambda}}$$

for any vector bundle  $\mathcal{E} \in \text{Vect}(X_C)$ .

Recalling the functor

$$\mathsf{Isoc}_{\mathrm{E}} \to \mathsf{Vect}(\mathrm{X}_C)$$

sends  $V_{-\lambda} \mapsto \mathcal{O}(\lambda)$ , the Dieudonné-Manin decomposition

$$\mathsf{Isoc}_{\mathrm{E}} \simeq \bigoplus_{\lambda \in \mathbf{Q}} \mathsf{Isoc}_{\mathrm{E}}^{\lambda} = \bigoplus_{\lambda \in \mathbf{Q}} V_{\lambda} \otimes \mathsf{Vect}_{\mathrm{E}}$$

implies this functor is a bijection on isomorphism classes.

REMARK 1.4. This generalizes to G-bundles and G-isocrystals. We can interpret a G-torsor on  $X_C$  as an exact  $\otimes$ -functor

$$\mathsf{Rep}_{\mathbf{Q}_p}(G) \to \mathsf{Vect}(X_C).$$

Then understanding  $Vect(X_C)$  sufficiently well, i.e. the previous decomposition, produces a functor

$$\mathsf{Rep}_{\mathbf{Q}_p}(G) \to \mathbf{Q} - \mathsf{FilVB}(X_C)^{\mathrm{HN}},$$

the category of  $\mathbf{Q}$ -filtered vector bundles on  $X_C$  such that the  $\lambda \in \mathbf{Q}$  component  $\mathcal{E}^{\lambda}$  is semistable of slope  $\lambda$ . It's easy to check this is an exact  $\otimes$ -functor: exactness follows from  $\mathsf{Rep}_{\mathbf{Q}_p}(G)$  being semisimple, and we can use the previous classification of vector bundles to check it is a  $\otimes$ -functor.

This allows us to produce an associated graded exact ⊗-functor

$$\mathsf{Rep}_{\mathbf{Q}_p}(G) \to \mathsf{Isoc}_{\mathbf{Q}_p},$$

which is precisely the data of a G-isocrystal in B(G). To show this classifies the isomorphism classes of vector bundles we just need to split the previous filtration, which is done by computing  $H^1(X_C, \mathcal{O}(\lambda)) = 0$  for  $\lambda > 0$  so there are no extensions.

2. Ampleness of 
$$\mathcal{O}(1)$$

In the last section, we defined  $\mathcal{O}(1)$  to be the image of the isocrystal  $V_{-1}$  under the functor

$$\mathsf{Isoc}_{\mathsf{E}} \to \mathsf{Vect}(\mathsf{X}_C).$$

It will be important for the argument to verify that  $\mathcal{O}(1)$  is ample, or that  $\mathcal{E}(n)$  is globally generated and  $H^1(\mathcal{E}(n)) = 0$  for  $n \gg 0$ .

The reason we care about this is that it will give an injection

$$\mathcal{O}_{\mathcal{X}_C}(-d) \to \mathcal{E}$$

for an arbitrary vector bundle. Indeed, a sufficiently large twist of  $\mathcal{E}$  will then be globally generated and in particular admit a section, so upon untwisting we get the desired map.

THEOREM 2.1 (Kedlaya-Liu). Let  $S/\mathbf{F}_q$  be an affinoid perfectoid space  $\mathrm{Spa}(R,R^+)$ , and let  $\mathcal E$  be a vector bundle on  $X_{S,E}$ . Then there is some  $n_0$  such that for all  $n \geq n_0$  the vector bundle  $\mathcal E(n)$  is globally generated and  $\mathrm{H}^1(X_{S,E},\mathcal E(n))=0$ .

*Sketch.* The proof is quite complicated and technical, so we will only give the basic idea of how to approach the question. We'll focus on showing H<sup>1</sup> vanishes.

Noting that the Frobenius  $\varphi_S$  multiplies the radius by q, so we can present

$$X_S = Y_S/\varphi^{\mathbf{Z}} = Y_{S,[1,q]}/(Y_{S,[1,1]} \sim Y_{S,[q,q]}).$$

Here,  $Y_{S,I}$  is the open affinoid annulus  $rad^{-1}(I)$  for the radius function

$$\operatorname{rad}: |Y_S| \to (0, \infty).$$

Explicitly,

$$\mathbf{Y}_{S,[a,b]} = \{|\pi|^b \le |[\varpi]| \le |\pi^a|\} \subset \mathbf{Y}_S.$$

An immediate consequence of this presentation is that upon building a Čech complex computing cohomology, one obtains

$$R\Gamma(X_S, \mathcal{E}) = [\mathcal{E}(Y_{S,[1,q]}) \to \mathcal{E}(Y_{S,[q,q]})]$$

via  $\varphi_S - 1$ . By vanishing for affinoids, with no work we see  $H^2$  vanishes. To get  $H^1$  to vanish, you need to check this map is surjective for a sufficiently large twist.

The Čech approach allows us to reduce this to a commutative algebra question: any  $\mathcal{E}$  can be written a finite projective  $B_{R,[1,q]}$ -module M with an isomorphism on its base changes

$$\varphi_M: M_{[q,q]} \simeq M_{[1,1]}$$

which is linear over  $\varphi$ .

Kedlaya-Liu show that one can reduce to the case where M is free, and in this case  $\varphi_M$  is given quite explicitly by

$$\varphi_M = A^{-1}\varphi$$

for  $A \in GL_m(B_{R,[1,1]})$ . Under this description of a vector bundle, a twist by  $\mathcal{O}(1)$  amounts to sending  $A \mapsto A\pi$  (recall  $\pi$  is the uniformizer for E; we use  $\varpi$  for perfectoid spaces). Once this setup is done, Kedlaya-Liu manually check global generation by producing explicit elements and verify  $\varphi - A$  is surjective after an appropriate twist to manipulate the matrix entries.

More precisely, they show that for  $1 < r \le q$  rational there are m elements

$$v_1, \ldots, v_m \in (\mathbf{B}_{\mathbf{R},[1,q]}^m)^{\varphi = \mathbf{A}} = \mathbf{H}^0(\mathbf{X}_S, \mathcal{E})$$

which form a basis of  $B^m_{R,[r,q]}$ . Applying this to enough strips proves global generation, and one proves this by showing  $\varphi - A$  is surjective in an *effective* way, that is one can pick preimages for  $\varphi - A : B^m_{R,[1,q]} \to B^m_{R,[1,1]}$  such that the preimage has a small spectral norm on  $B^m_{R,[r,q]}$ . Kedlaya-Liu provide a convergent procedure to produce these preimages, and then pick  $v_i = [\varpi]^M e_i - v_i'$  as small perturbation of the standard basis to land in the  $\varphi = A$  invariants. Here,  $v_i'$  is chosen so  $(\varphi - A)(v_i') = (\varphi - A)([\varpi]^M e_i)$  (thus landing in the  $\varphi = A$  fixed points) but has a sufficiently small norm on  $B^m_{R,[1,q]}$  so that these remain a basis.

### 3. The HN formalism

We will begin by recalling what the Harder-Narasimhan formalism is for a curve X/C.

DEFINITION 3.1. Let  $\mathcal{E}$  be a vector bundle on a smooth projective curve  $X/\mathbb{C}$ . We define the *slope* of  $\mathcal{E}$  to be  $\lambda = \deg(\mathcal{E})/\mathrm{rank}(\mathcal{E}) \in \mathbb{Q}$ .

A vector bundle is *semistable* if any proper nonzero subbundle  $\mathcal{E}'$  has  $\lambda(\mathcal{E}') \leq \lambda(\mathcal{E})$ .

THEOREM 3.2. Let  $\mathcal{E}$  be a vector bundle on a smooth projective curve  $X/\mathbb{C}$ . Then there exists a unique filtration

$$0 = \mathcal{E}_0 \subset \ldots \subset \mathcal{E}_r = \mathcal{E}$$

such that all subquotients  $\mathcal{F}_i = \mathcal{E}_{i+1}/\mathcal{E}_i$  are semistable and slopes of  $\mathcal{F}_i$  decrease as the index i increases.

As it turns out, an extremely similar formalism can be defined on the Fargues-Fontaine curve  $X_C$ . The non-obvious part of the definition of a slope is defining the degree, which requires us to determine the line bundles.

PROPOSITION 3.3. Let  $S^{\#}$  be a characteristic zero untilt lying over  $E_{\infty}$ , the completion of the maximal abelian extension of E. Then there is an exact sequence of  $\mathcal{O}_{X_S}$ -modules

$$0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}(1) \longrightarrow \mathcal{O}_{S^{\#}} \longrightarrow 0.$$

Sketch. This is used several times, so I will explain how to write down the maps.

Providing a map  $\mathcal{O} \to \mathcal{O}(1)$  amounts to taking the data of an untilt  $S^{\#}$  and then providing a section  $s \in H^0(X_{S,E}, \mathcal{O}_{X_{S,E}}(1))$ . Using a slight modification of the Čech covering we used to show  $\mathcal{O}(1)$  is ample, we can identify

$$H^0(X_{\mathit{S},E},\mathcal{O}_{X_{\mathit{C},E}}(1)) = \mathcal{O}(Y_{[1,\infty]})^{\varphi=\pi}$$

where  $Y_{[1,\infty]} = \{|[\varpi]| \le |\pi| \ne 0\} \subset \operatorname{Spa} W_{\mathcal{O}_E}(S^+)$ . Note that this is not contained in Y. Using the fact that Frobenius scales the radius function by q, we can further identify

$$\mathcal{O}(Y_{[1,\infty]})^{\varphi=\pi} = (B_{cris}^+)^{\varphi=\pi}.$$

Now apply Scholze-Weinstein Theorem A: the Dieudonné functor on semiperfect rings is fully faithful. We obtain

$$H^0(X_{S,E}, \mathcal{O}_{X_{S,E}}(1)) = Hom_{\mathcal{O}_E}(E/\mathcal{O}_E, G(S^{\#+}/\pi))[1/\pi] = \tilde{G}(S^{\#+}/\pi) = \tilde{G}(S^{\#+})$$

where  $G \simeq \operatorname{Spf} \mathcal{O}_E[[X]]$  is the Lubin-Tate formal group of E and  $\tilde{E} = \varprojlim_{\times \pi} G \simeq \operatorname{Spf} \mathcal{O}_E[[\tilde{X}^{1/p^{\infty}}]]$  is the universal cover. In particular, the first identification we use the p-divisible group  $E/\mathcal{O}_E$  and identify  $G(S^{\#+}/\pi)$  with the points of the associated p-divisible group (by taking the p-adic Tate module for the formal group).

With this machinery in place, so long as our untilt lies over  $E_{\infty}$  we can produce a distinguished element of  $\tilde{G}(C^{\#,+})$  via the map

$$V_{\pi}(G) \to \tilde{G}$$

where  $V_{\pi}$  is the rational  $\pi$ -adic Tate module. This arises by taking universal covers on  $\bigcup_n G[\pi^n] \to G$ . Given an untilt  $C^\#/E_{\infty}$ , we can produce an element of  $V_{\pi}$  which we use for the section.

The final map is just evaluation at  $C^{\#}$ . Exactness ends up being possible to reduce to  $C^{\#}$  to the universal case of  $E_{\infty}$  where it can be checked directly.

PROPOSITION 3.4. Let x be a characteristic zero untilt. The scheme  $X_C^{alg} - [x]$  is affine, and the spectrum of a PID.

Now we can prove the following.

Proposition 3.5. We have

$$\mathbf{Z} \simeq \operatorname{Pic}(\mathbf{X}_C)$$

via  $n \mapsto \mathcal{O}(n)$ .

*Proof.* First, by GAGA we may instead consider the algebraic curve. The corollary shows any vector bundle on  $X_C^{\text{alg}}$  is trivialized on  $X_C^{\text{alg}} - [x]$ , so any vector bundle is of the form  $\mathcal{O}(n[x])$ . Here we are appealing to the fact that the local ring at x is a DVR, so by Beauville-Laszlo gluing we have

$$\operatorname{Pic}(\mathbf{X}_C^{\operatorname{alg}}) \simeq \operatorname{Pic}(\mathbf{X}_C^{\operatorname{alg}} - [x]) \times_{\operatorname{Pic}(\mathbf{D}_x^{\circ})} \operatorname{Pic}(\mathbf{D}_x)$$

where  $D_x = \widehat{\mathcal{O}_{X_C,x}}$  and  $D^\circ$  punctures this. Knowing the local ring is a DVR, we get  $\mathbf{Z}$ . For example, if we had  $\mathbf{C}_p[[t]]$  we look at  $\mathbf{C}_p[[t]]$  lattices in  $\mathbf{C}_p((t))$ , which are classified by  $t^n$ . In general if R is a DVR with fraction field K these are going to be classified by  $K^\times/R^\times$ , or the value group, which is  $\mathbf{Z}$ .

As this point, we already know  $Pic(X_C) \simeq \mathbf{Z}$ , but the isomorphism is not canonical.

It suffices to show  $\mathcal{O}([x]) \simeq \mathcal{O}(1)$  for any untilt  $x = \operatorname{Spa}(C^{\sharp}, C^{\sharp,+})$  to make the isomorphism canonical.

To see this look at the previous exact sequence

$$0 \longrightarrow \mathcal{O}_{X_C} \longrightarrow \mathcal{O}_{X_C}(1) \longrightarrow \mathcal{O}_{C^\#} \longrightarrow 0.$$

This means that the map  $\mathcal{O}_{X_C} \to \mathcal{O}_{X_C}(1)$  factors through the twisted ideal sheaf  $I_{[x]}(1)$ , and by exactness it is an isomorphism as  $I_{[x]}(1) = \ker(\mathcal{O}_{X_C}(1) \to \mathcal{O}_{C^\#})$ .

Observe  $I_{[x]}$  is just  $\mathcal{O}(-[x])$ . As we just argued that

$$I_{[x]}(1) \simeq \mathcal{O}_{X_C}$$

so in particular  $\mathcal{O}(-[x]) \simeq \mathcal{O}_{X_C}(-1)$  by untwisting. Taking duals, the claim follows.  $\ \Box$ 

DEFINITION 3.6. Let  $\mathcal{E}$  be a vector bundle on  $X_C$ . We define  $\deg(\mathcal{E}) = \deg(\det \mathcal{E})$ , where deg is the isomorphism  $\operatorname{Pic}(X_C) \to \mathbf{Z}$ .

Then we set the slope  $\lambda$  to be the degree over the rank.

One can axiomatize a Harder-Narasimhan formalism and verify the axioms hold to deduce that it holds for  $X_C$  given this definition of a slope. This can be generalized, but the definition below is sufficient.

DEFINITION 3.7 (Abstract HN formalism). An abstract HN formalism consists of a quasi-abelian category  $\mathcal{C}$  equipped with degree and rank functions  $|\mathcal{C}| \to \mathbf{Z}_{\geq 0}$  which are additive on exact sequences.

REMARK 3.8. If  $X = \operatorname{Spec} R$  is a scheme, generally  $\operatorname{Vect}(X)$  is not quasi-abelian since we don't need to have kernels and cokernels (the third condition is that Ext is bifunctorial). But in the case that R is a Dedekind domain, like with a curve, this is true.

It's easy to check rank and degree are additive in short exact sequences. For rank this is clear, and for degree we just take determinant bundles: the determinant functor factors through  $K^0(\text{Vect}(X_C))$ , so in particular for an exact sequence  $0 \to \mathcal{E}_1 \to \mathcal{E}_2 \to \mathcal{E}_3 \to 0$  we obtain  $\det(\mathcal{E}_2) \simeq \det(\mathcal{E}_1) \otimes \det(\mathcal{E}_3)$ , and hence the degree is additive.

We then obtain the following corollary.

COROLLARY 3.9. The scheme  $X_C^{\text{alg}}$  has a Harder-Narasimhan formalism. That is, Theorem 3.2 holds verbatim with the definition of semistable being the same.

REMARK 3.10. The vector bundle  $\mathcal{O}(\lambda)$  is always stable of slope  $\lambda$ , and  $\mathcal{O}(\lambda)^n$  is always semistable of slope  $\lambda$ , or lies in  $\mathsf{Vect}^{\lambda}(\mathsf{X}_{C,\mathrm{E}})$ .

REMARK 3.11. If  $\mathcal{E} \simeq \bigoplus_{\lambda \in \mathbf{Q}} \mathcal{O}(\lambda)^{n_{\lambda}}$ , the slope of  $\mathcal{E}$  is the  $n_{\lambda}$ -weighted average of the  $\lambda$ 's that appear.

# 4. REDUCTIONS FOR THE MAIN THEOREM

Having now established the Harder-Narasimhan formalism on  $Vect(X_C)$ , we will be able to reduce the desired classification theorem to the case of semistable vector bundles and further to semistable slope 0 vector bundles. The triviality of semistable slope 0 vector bundles will be the most difficult part.

Proposition 4.1. The cohomology group

$$\mathrm{H}^1(\mathrm{X}_S,\mathcal{O}_{\mathrm{X}_S}(\lambda))$$

is trivial for  $\lambda \in \mathbf{Q}_{>0}$ . In particular,  $\mathrm{Ext}^1(\mathcal{O}(\lambda), \mathcal{O}(\lambda')) = 0$  when  $\lambda > \lambda'$ .

*Proof.* This can be proven directly. First, we make a small reduction: if  $\lambda = s/r$ , replacing E with a degree E extension gives a covering  $f: X_{S,E'} \to X_{S,E}$  of the curve where  $f_*\mathcal{O}(s) = \mathcal{O}(s/r)$ . Then it suffices to show vanishing for  $H^1$  of  $\mathcal{O}(n)$ .

Recalling the module setup used to prove  $H^1(X_C, \mathcal{E}(n)) = 0$  for  $n \gg 0$ , the corresponding object for  $\mathcal{O}(n)$  is a free rank 1 module M over  $B_{C,[1,q]}$  equipped with

$$\varphi_M = \mathbf{A}^{-1} \varphi : M_{[q,q]} \to M_{[1,1]}.$$

Here A is an automorphism of  $B_{R,[1,1]}$ . Recall that using this presentation of  $X_S$  we get  $H^0$  as the  $\varphi = A$  invariants, since we need  $M_{[q,q]}$  and  $M_{[1,1]}$  to be identified. For higher cohomology we look at the derived invariants.

Since twisting corresponds to multiplication by  $\pi$ , we're looking at  $A = \pi^n$ . To get  $H^1$  to vanish we'll need to show

$$\varphi - \pi^n : \mathcal{B}_{C,[1,q]} \to \mathcal{B}_{C,[1,1]}$$

is a surjection.

This can be done fairly directly, without the more involved methods Kedlaya-Liu used for surjectivity. Any element of  $B_{C,[1,1]}$  has a decomposition into  $B_{C,[0,1]}[1/\pi]$  and  $[\varpi]B_{C,[1,\infty]}$ . Here,

$$Y_{C,[0,1]} = \{ |\pi| \le |[\varpi]| \ne 0 \}$$

and  $[1, \infty]$  does the reverse; [1, 1] asks for equality, which is why we have the decomposition.

Assume  $f \in \mathcal{B}_{C,[0,1]}$ . Then

$$g = \varphi^{-1}(f) + \pi^n \varphi^{-2}(f) + \pi^{2n} \varphi^{-3}(f) + \dots$$

converges in  $B_{[0,q]}$ . Then g is an explicit preimage for f; similarly this works for  $B_{C,[0,1]}[1/\pi]$ . For  $[\varpi]B_{C,[1,\infty]}$  we use

$$g = -\pi^{-n}f - \pi^{-2n}\varphi(f) - \dots$$

which converges in  $B_{C,[1,q]}$ . Thus, we get explicit preimages.

To see the second claim, suppose we have an extension

$$0 \longrightarrow \mathcal{O}(\lambda) \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}(\lambda') \longrightarrow 0.$$

Then  $H^1(X_C, \mathcal{O}(\lambda) \otimes \mathcal{O}(\lambda')^{\vee})$  parameterizes extensions. To see this is 0, it suffices to see  $H^1(X_C, \mathcal{O}(\lambda - \lambda')) = 0$ . This is precisely what the first claim says.

Proposition 4.2. We have

$$\operatorname{Ext}^1(\mathcal{O}_{X_{\mathit{C}}}(\lambda),\mathcal{O}_{X_{\mathit{C}}}(\lambda))=0$$

for any  $\lambda \in \mathbf{Q}$ .

*Proof.* As seen in the previous proposition, this amounts to  $H^1(X_C, \mathcal{O})$  vanishing. We can again appeal to the exact sequence

$$0 \longrightarrow \mathcal{O}_{X_S} \longrightarrow \mathcal{O}_{X_S}(1) \longrightarrow \mathcal{O}_{S^\#} \longrightarrow 0$$

for an untilt. In this case after taking cohomology we get

$$H^0(X_S, \mathcal{O}_{X_S}(1)) \xrightarrow{\log} S^{\#} \longrightarrow H^1(X_S, \mathcal{O}_{X_S})$$

where the first map is given by the logarithm map

$$\tilde{G}(S^{\#+}) \to G(S^{\#+}) \to S^{\#}$$

where G is the Lubin-Tate formal group and  $\tilde{G}$  is the universal cover. Once we have identified  $\tilde{G}(S^{\#+})$  with global sections of  $\mathcal{O}(1)$  via Scholze-Weinstein theorem A, Lemma 3.5.1 shows compatibility with the quasilogarithm. Unwinding definitions shows explicitly what the map to  $S^{\#}$  is, and this map is pro-étale locally surjective with kernel  $\underline{E}$ . This shows  $H^1(X_C, \mathcal{O})$  vanishes pro-étale locally, but it's already a sheaf so it just vanishes.  $\square$ 

COROLLARY 4.3. To deduce  $\mathcal{E} \simeq \bigoplus_{\lambda \in \mathbf{Q}} \mathcal{O}(\lambda)^{n_{\lambda}}$  for any  $\mathcal{E} \in \mathsf{Vect}(X_{C,E})$ , it suffices to prove any semistable slope 0 vector bundle admits an injective map  $\mathcal{O} \to \mathcal{E}$ .

*Proof.* We argue by induction on the rank. Having computed  $Pic(X_C) \simeq \mathbf{Z}$  via  $n \mapsto \mathcal{O}_{X_C}(n)$ , we know the rank one case is done.

Next, suppose the theorem is proven for rank n and let  $\mathcal{E}$  be of rank n+1. If  $\mathcal{E}$  is not semistable, then looking at the HN filtration

$$0 = \mathcal{E}_0 \subset \ldots \subset \mathcal{E}_r = \mathcal{E}$$

we know  $r-1 \neq 0$ . Thus, we look at  $\mathcal{E}_{r-1}$ , knowing that  $\mathcal{E}/\mathcal{E}_{r-1}$  is a semistable vector bundle. That is, we obtain an extension

$$0 \longrightarrow \mathcal{E}_{r-1} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}/\mathcal{E}_{r-1} \to 0,$$

where by induction on both sides the vector bundles are a direct sum of  $\mathcal{O}(\lambda)'s$  (and on the right, only the minimal slope  $\lambda$ ). The first proposition then suffices to show  $\mathcal{E}$  is a direct sum of  $\mathcal{O}(\lambda)$ 's.

Thus, we are reduced to the case where  $\mathcal{E}$  is semistable of slope  $\lambda$ . By the second proposition, to deduce the claim amounts to producing an injective map

$$\mathcal{O}(\lambda) \to \mathcal{E}$$

since the category of semistable slope  $\lambda$  vector bundles is abelian (this is true in a general Harder-Narasimhan formalism); by applying the induction hypothesis, we see  $\mathcal{E}$  is an extension of  $\mathcal{O}(\lambda)$  and  $\mathcal{O}(\lambda)^{\mathrm{rank}(\mathcal{E})-1}$ , which is necessarily trivial.

Finally, we reduce to the semistable slope 0 case. Let  $\lambda = \frac{s}{r}$ , and put E' as the unramified degree r extension of E. Consider the degree r covering

$$f: X_{C,E'} \to X_{C,E}$$
.

Then  $\mathcal{O}(\lambda) = f_*\mathcal{O}(s)$ , so by adjunction we need a nonzero map

$$\mathcal{O}_{\mathbf{X}_{C,\mathbf{E}'}}(s) \to f^*\mathcal{E}.$$

Then by twisting we reduce to the slope 0 case.

Thus we are left with proving the following theorem, which is where the technical details hide.

THEOREM 4.4. Let  $\mathcal{E} \in \mathsf{Vect}(X_{C,E})$  be semistable of slope 0. Then there exists an injective map

$$\mathcal{O}_{X_{GE}} \to \mathcal{E}$$
.

## 5. Diamonds and the v-topology

To prove this final reduction, we will need some preliminary definitions. I will assume familiarity with adic and perfectoid spaces.

The first result is a useful motivational theorem.

THEOREM 5.1 (Scholze). Let  $X/\mathbb{Q}_p$  be a rigid analytic variety. Then perfectoid spaces over X form a basis for the proétale topology.

For example, if X is "small" in the sense that there is an étale map  $X \to T^n$ , we can use the perfectoid torus  $\tilde{T}^n$  to give a proétale cover.

In fact, this is even more strongly the case: picking a proétale cover  $\tilde{X}$  which is perfectoid, we have

$$X = \operatorname{Coeq}(\tilde{X} \times_X \tilde{X} \Longrightarrow \tilde{X})$$

in the category of analytic adic spaces.

Now observing this is a coequalizer of perfectoid spaces, the idea is that the diamond  $X^{\diamond}$  should generalize the tilting construction to rigid analytic spaces over  $\mathbf{Q}_p$ . Indeed, once we have this presentation the assignment

$$X \mapsto X^{\diamond}$$

should forget the structure map to  $\operatorname{Spa} \mathbf{Q}_p$  by taking such a coequalizer presentation and tilting the perfectoid spaces.

This is made precise with the following definitions.

DEFINITION 5.2. Let Perf be the category of all characteristic p perfectoid spaces. A diamond D is a proétale sheaf on Perf such that

$$D = X/R$$

where  $X \in \mathsf{Perf}$  and  $R \subset X \times X$  is an equivalence relation such that the projections onto each copy of X are proétale.

THEOREM 5.3 (Scholze). The category of diamonds has all products, fiber products, and quotients by pro-étale equivalence relations.

REMARK 5.4. We're using that the absolute product of characteristic p perfectoid spaces is again perfectoid.

To X/ Spa  $\mathbf{Q}_p$  a rigid analytic space, using the previous coequalizer presentation we'd like to write

$$X^{\diamond} = \operatorname{Coeq}((\tilde{X} \times_X \tilde{X})^{\flat} \Longrightarrow \tilde{X}^{\flat}).$$

This doesn't literally make sense in adic space, but in the category of diamonds is does by definition. Indeed, if one interprets  $(-)^{\flat}$  on a perfectoid space to mean the proétale  $h_{(-)^{\flat}}$  given by the Yoneda embedding, this can be interpreted as a coequalizer in the category of diamonds. This now exists by construction.

However, it's unclear that this construction is independent of choices. A better construction is the following.

DEFINITION 5.5. Let X/Spa  $\mathbf{Q}_p$  be a rigid analytic space. The presheaf X $^{\diamond}$  on Perf is given by

$$S \mapsto \{(S^{\#}, S^{\#} \to X)\}.$$

Here,  $S^{\#}$  is a characteristic zero untilt.

REMARK 5.6. If X is perfectoid and we try this, we get the sheaf for  $X^{\flat}$  under the Yoneda embedding for Perf. This is because  $\mathsf{Perfd}_X \simeq \mathsf{Perfd}_{X^{\flat}}$ .

REMARK 5.7. We have 
$$Y_{S,E} = S \times (\operatorname{Spa} E)^{\diamond}$$
, and  $X_{S,E} = S/\varphi^{\mathbf{Z}} \times (\operatorname{Spa} E)^{\diamond}$ .

THEOREM 5.8 (Scholze). The presheaf  $X^{\diamond}$  is a proétale sheaf on Perf, and furthermore is a diamond. The following hold when X/K is a smooth rigid analytic space over a p-adic field:

• The functor

$$X \mapsto (X^{\diamond}, X^{\diamond} \to \operatorname{Spa} K^{\diamond})$$

is fully faithful.

- We can recover |X| through a presentation of the diamond via a perfectoid proétale cover  $\tilde{X}$  to obtain a proétale equivalence relation  $R = \tilde{X} \times_X \tilde{X}$ . One has  $|X| = |\tilde{X}|/|R|$ .
- The category  $X_{\text{\'et}}^{\diamond}$  of diamonds étale over  $X^{\diamond}$  recovers the usual site  $X_{\text{\'et}}$ .

We will also need to make use of a related concept called the v-topology on Perfd (we now use all perfectoid spaces).

DEFINITION 5.9. The v-topology on Perfd is the Grothendieck topology generated by open covers and all surjective maps of affinoids.

Initially it seems nothing could possibly be a sheaf for the v-topology, but actually many useful things are, including all diamonds.

<sup>&</sup>lt;sup>a</sup>One defines the diamond site  $X_{\text{\'et}}^{\diamond}$  by saying  $f: \mathcal{G} \to \mathcal{F}$  is étale if for  $Y \to \mathcal{F}$  perfectoid the pullback  $\mathcal{G} \times_{\mathcal{F}} Y$  is representable by a perfectoid space étale over Y.

THEOREM 5.10 (Scholze). Any diamond is a *v*-sheaf (regarded on Perf).

REMARK 5.11. Noting the similarity of the definition of a diamond and an algebraic space, this mirrors the result that algebraic spaces are automatically fpqc sheaves.

## 6. Proof of the main theorem

Recall that we proved that  $\mathcal{E} \in \mathsf{Vect}(X_C)$  admitting a decomposition  $\mathcal{E} \simeq \bigoplus_{\lambda \in \mathbf{Q}} \mathcal{O}(\lambda)^{n_\lambda}$  is implies by the following theorem, which we will now go ahead and prove.

THEOREM 6.1. Let  $\mathcal{E} \in \text{Vect}(X_{C,E})$  be semistable of slope 0. Then there exists an injective map

$$\mathcal{O}_{X_{CE}} \to \mathcal{E}$$
.

*Proof.* We will break this proof up into several steps:

- Show that we can replace C by an extension.
- Show that after extending C, there exists  $d \ge 0$  such that

$$\mathcal{O}_{X_S}(-d) \to \mathcal{E}$$

is injective.

- Reduce ruling out  $d \ge 2$  to the key lemma.
- Reduce ruling out d=1 to the key lemma.
- Prove the key lemma.

**Step 1**. Suppose the claim is true over C'/C. Considering the v-sheaf

$$S \in \mathsf{Perfd}_C \mapsto \{\mathcal{E}_S \simeq \mathcal{O}^n_{\mathbf{X}_S}\},\$$

observe that since  $\Gamma_{\operatorname{pro\acute{e}t}}(S,\underline{E}) \simeq \Gamma(X_S,\mathcal{O}_{X_S})$  this is a v-quasitors of  $\operatorname{GL}_n(E)$ . Indeed on S, any continuous map  $|S| \to \operatorname{GL}_n(E)$  yields an automorphism of  $\overline{\underline{E}}^n(S) = \operatorname{Hom}_{\operatorname{cont}}(|S|,E^n)$ . Hence we obtain an action of  $\operatorname{GL}_n(E)(S)$  on  $\Gamma_{\operatorname{pro\acute{e}t}}(S,\underline{E}^n) \simeq \Gamma(X_S,\mathcal{O}^n_{X_S})$ , which gives the desired action. This is only a quasitors or because we lack v-local triviality.

If the claim is true over C', then over C' there's a nonzero section (trivializing  $\mathcal{E}$ ). This implies that over C we get an actual v-torsor, as we can deduce the v-local trivialization condition by the fact that  $\operatorname{Spa} C' \to \operatorname{Spa} C$  is a v-cover.

Then in Scholze-Weinstein's Berkeley lectures it was shown any such  $GL_n(E)$ -torsor is representable by a perfectoid space pro-étale over  $\operatorname{Spa} C$  (since  $GL_n(E)$  is locally profinite). This implies the torsor admits a section over C, so the claim follows.

Step 2. This is where we use that  $\mathcal{O}_{X_{\mathcal{C}}}(1)$  is ample! Let  $\mathcal{L}$  be the sub line bundle of maximal degree. Since  $\mathcal{E}$  is semistable of slope zero, the degree of  $\mathcal{L}$  is  $\leq 0$ . Thus, if  $\mathcal{L}$  simply exists, we obtain an injection  $\mathcal{O}_{X_{\mathcal{S}}}(-d) \to \mathcal{E}$ . In particular, all we need is for  $\mathcal{E}$  to admit a global section after a twist. This indeed is the case by ampleness. Once we know  $\mathcal{E}$  admits a sub line bundle, we can just take the maximal degree one.

Introduction of the key lemma. If d=0, we are done. We will reduce cases where d>0 to the key lemma below, which gives a global section and hence the desired map  $\mathcal{O}_{\mathbf{X}_{\mathbf{C},\mathbf{E}}} \to \mathcal{E}$ . We use step (1) to be able to take the extension to satisfy this hypothesis.

LEMMA 6.2 (Key lemma). Let

$$0 \longrightarrow \mathcal{O}_{X_C}(-1) \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}_{X_C}(1/n) \longrightarrow 0$$

be an extension of vector bundles with  $n \geq 1$ . Then after taking some extension of  $C, \mathcal{E}$  admits a global section.

Step 3. The idea is that having  $d \geq 2$  contradicts minimality of d if we assume the key lemma. Since we chose the minimal d,  $\mathcal{F} = \mathcal{E}/\mathcal{O}(-d)$  is again a vector bundle. It has rank  $\leq n-1$ , degree d and positive slope.

Thus, using the main theorem inductively, we'll get an injection  $\mathcal{O}(-d+2) \to \mathcal{F}$  since  $\mathcal{O}(-d+2)$  has maps to  $\mathcal{O}(\lambda)$  for any  $\lambda \geq 0$  (recall we made a map  $\mathcal{O} \to \mathcal{O}(1)$ , hence to  $\mathcal{O}(n)$ , and  $\mathcal{O}(\lambda)$  by changing E). If d=1, it's possible  $\mathcal{F}=\mathcal{O}(1/(n-1))$  and we won't get a map from  $\mathcal{O}(1)$  (unless n=2; in many notes one skips straight to ruling out  $d\geq 1$  by assuming this).

Now we apply this injection. Pulling back

$$0 \longrightarrow \mathcal{O}(-d) \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow 0$$

by the morphism induces an extension

$$0 \longrightarrow \mathcal{O}(-d) \longrightarrow \mathcal{G} \longrightarrow \mathcal{O}(-d-2) \longrightarrow 0.$$

By the key lemma, after twisting to get an extension of  $\mathcal{O}(-1)$  and  $\mathcal{O}(1)$  after enlarging C we obtain an injection  $\mathcal{O} \to \mathcal{G}(d-1)$ , and hence an injection

$$\mathcal{O}(-d+1) \to \mathcal{G} \to \mathcal{E}$$

contradicting minimality.

**Step 4**. Suppose that in step 2 we obtained d = 1. We then get an extension

$$0 \longrightarrow \mathcal{O}(-1) \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow 0$$

where  $\mathcal{F}$  has rank  $\leq n-1$ , degree 1, and slope  $\geq 0$ . Via induction we can apply the classification theorem, telling us

$$\mathcal{F} \simeq \mathcal{O}^i \oplus \mathcal{O}\left(\frac{1}{n-1-i}\right).$$

If i=0, by the key lemma we are done. If  $i\neq 0$ , then pick a map  $\mathcal{O}\to\mathcal{F}$  and pull back by this. Then we can apply the classification theorem on the pullback  $\mathcal{E}'$  of  $\mathcal{E}$  by the map, deducing that we have an injection  $\mathcal{O}\to\mathcal{E}'\to\mathcal{E}$ .

Step 5. It remains to prove the key lemma. We're given an extension

$$0 \longrightarrow \mathcal{O}_{X_C}(-1) \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}_{X_C}(1/n) \longrightarrow 0$$

and wish to show after taking an extension of C that  $\mathcal{E}$  admits a global section. To avoid introducing details about diamonds, I will only give a brief sketch of the idea here. Taking cohomology of this exact sequence, we obtain an injection

$$BC(\mathcal{O}(1/n)) \to BC(\mathcal{O}(-1)[1])$$

of Banach-Colmez spaces.

One can show that  $\mathrm{BC}(\mathcal{O}(1/n))$  is a perfectoid disk  $\tilde{\mathrm{D}}_C$  and

$$\mathrm{BC}(\mathcal{O}(-1)[1]) \simeq (\mathbf{A}_{C^{\#}}^{1})^{\diamond}/\underline{\mathbf{E}}.$$

However, we can argue that after base extension to  $C^{\prime}/C$ 

$$\tilde{\mathbf{D}}_C \to (\mathbf{A}_{C^\#}^1)^{\diamond}/\underline{\mathbf{E}}$$

is necessarily surjective, implying the map is an isomorphism. Indeed, the image hits a non-classical point (in the target classical points are totally disconnected, but the source is connected and not a point); this means after base extension the image contains a non-empty open subset of the diamond  $BC(\mathcal{O}(-1)[1])$ .

That is, the image of the map contains an open neighborhood of the origin of the afine line in  $(\mathbf{A}_{C^{\#}}^{1})^{\diamond}$  after base extension, which due to the scaling action of  $\mathbf{E}^{\times}$  implies surjectivity.

But this cannot be the case, as it would imply the map is an isomorphism. The target  $BC(\mathcal{O}(-1)[1])$  is not representable but the source is by a perfectoid disk, and representability is by definition preserved under isomorphisms of diamonds.

REMARK 6.3. Given that this decomposition holds for isomorphism classes, it's a natural question to ask what exactly the difference in the categories is conceptually.

The easy answer is that some morphisms are different: in isocrystals,  $\operatorname{Hom}(V_0, V_{-1}) = 0$  but  $\operatorname{Hom}(\mathcal{O}, \mathcal{O}(1))$  is nonempty (as we saw with the exact sequence!).

However, there is a more interesting answer that drops any reference to isocrystals: it turns out with a modification of the curve to an "absolute curve", we literally get an equivalence. We can contemplate the category

$$Bun_{FF}(X)$$

for any v-stack X of morphisms of v-stacks  $X \to \operatorname{Bun}_{\operatorname{FF}}$ .

By a recent theorem of Anschütz, for  $\operatorname{Spa} k^{\diamond}$   $(k = \overline{\mathbf{F}}_q)$  we actually obtain

$$\operatorname{Isoc}_{\check{\mathbf{E}}} \simeq \operatorname{Bun}_{\operatorname{FF}}(\operatorname{Spa} k^{\diamond}).$$

One should think of this as "vector bundles on the absolute curve  $X_{k,E}$ ", even though such an object doesn't literally exist. The difference between the two categories then has to do with the difference between  $\text{Vect}(X_{k,E}) := \text{Bun}_{FF}(\operatorname{Spa} k^{\diamond})$  and  $\text{Vect}(X_{C,E})$ .