
THE BEILINSON FIBER SQUARE

Abstract. Goodwillie originally proved that for an associativeQ-algebraR and nilpo-
tent ideal I that the relative theoryK(R, I) is equivalent toHC−(R, I) via theGoodwillie-
Jones trace map. The Dundas-Goodwillie-McCarthy theorem allows for general associa-
tive rings, but at the cost of replacing cyclic homology with topological cyclic homology.
We will discuss a variant, originally due to Beilinson and refined by Antieau-Mathew-
Morrow-Nikolaus, which works for commutative rings R henselian along (p) and the
ideal I = (p). This still allows us to compute in terms of cyclic homology.

We’ll then talk about an application of this result towards the p-adic variational
Hodge conjecture. This generalizes a result of Bloch–Esnault–Kerz.

1. Main theorem

LetR be an associative ring and I a nilpotent ideal inR. TheDundas-Goodwillie-McCarthy
theorem tells us that there is a cartesian square

K(R) K(R/I)

TC(R) TC(R/I)

tr tr

That is, the cyclotomic trace induces an equivalence

K(R, I) ≃ TC(R, I).

Here, these denote the fibers of K(R)→ K(R/I) and similarly for TC.

This is already extremely useful, but the problem is that TC can be a bit of a complicated
invariant.

The theorem I’ll be talking about allows us to understand K theory via HP and HC−.

Definition 1.1. Let R be an associative algebra over a base ring k. This is given by

HH(R) := R⊗L
R⊗LRop R.

This is an E∞ algebra over k; we assume the base ring is Z if not specified. We view
it as a spectrum.

This is basically THH, but given entirely in classical algebra.
1
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We write HC− = HH(R)hS
1
,HP = HH(R)tS

1 . Throughout, for various functors X(−)
from rings to spectra I will write X(−;Zp) for the p-adic completion and X(−;Qp) for
the rationalization of the p-adic completion.

The theorem I will be talking about is the following:

Theorem 1.2 (Antieau, Mathew, Morrow, Nikolaus). Let R be an associative ring.
There is a commutative diagram

K(R;Qp) K(R/p;Qp)

HC−(R;Qp) HP(R;Qp)

trGJ trcris

This will be cartesian if you further assume that R is commutative and Henselian
along (p). In particular, one gets for fibers

K(R, (p);Qp) ≃ ΣHC(R;Qp).

A similar result was discovered by Beilinson under mild extra hypotheses (p-complete and
bounded p-power torsion), for continuousK theory lim←−K(R/pn, (p)). Under Beilinson’s
hypotheses, this recovers the above. However, the proof of the theorem will be much
cleaner in this formulation, as we will be able to leverage results about TC.

One thing to note is that the hypothesis has changed here from nilpotence to (R, (p))
being a Henselian pair. This includes cases where (p) is locally nilpotent, but it also com-
putes p-adically complete rings. In particular, we have extended the class of rings that the
result applies to.

This advantage of this result is also that we are able to write everything purely in terms
of HC, which is far easier. This mimics Goodwillie’s original result, except that we don’t
enforce the strong condition that R to be aQ-algebra.

I’ll focus on a proof of this result, as well as an important application to the p-adic varia-
tional Hodge conjecture.

2. Proof of the main result

As it turns out, the proof of this result is not actually too involved if you are willing to
assume some results about relative K theory for Henselian pairs.
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Theorem 2.1 (Clausen-Mathew-Morrow). Let (R, (p) be a Henselian pair. Then the
trace induces an equivalence

K(R, (p);Zp) ≃ TC(R, (p);Zp).

In particular, we have a cartesian square

K(R;Qp) K(R/p;Qp)

TC(R;Qp) TC(R/p;Qp).

tr tr

The top of this square is what we want, but what we really need is to find a way to exit
the realm of TC and enter HC on the bottom to allow for a more computable result.

To get these to appear, we need to do something involving tensoring withZ. In particular,
the rough idea we want to use is that the S1-equivariant map

THH(R;Zp)⊗S Z→ HH(R;Zp)

is an equivalence after inverting p, which allows us to get HC− and HP to appear out of
the topological versions. In particular, we expect to get these out of applying (−)hS1 and
(−)tS1 to this tensor product.

In what follows, we write TC−(X) := XhS1 and TP(X) = XtS1 for a cyclotomic spec-
trum X ∈ CycSp. Then set

TC(X;Zp) := fib(can− φ : HC−(X;Zp)→ HP(X;Zp)).

On the other hand, whenwe take a ringR andwriteTC(R;Zp) as shorthand forTC(THH(R);Zp).

In the interest of taking X = THH(R;Zp), the first fiber square we are interested in is
the following, whereZmeans we takeZ as a spectrum and equip it with trivial S1 action.

Theorem 2.2. Let X be a bounded below cyclotomic spectrum. There is a cartesian
square

TC(X⊗S Z;Zp) TC(X⊗S THH(Fp);Zp)

TC−(X⊗S Z;Zp) TC−(X⊗S THH(Fp);Zp)

Proof. For a bounded cyclotomic spectrum X we have

TC(X;Zp) ≃ eq
(
TC−(X;Zp) TP(X;Zp)

)



4 THE BEILINSON FIBER SQUARE

The fact that the square is cartesian follows from

X⊗S Z→ X⊗S THH(Fp)

is an equivalence on TP(X;Zp). □

Once we have this, we upgrade to the following fiber square which gets us closed to fixing
the bottom of our original square.

Corollary 2.3. Let X be a bounded below cyclotomic spectrum which is also p-
complete. There exists natural map

TC(X⊗S THH(Fp);Zp)→ (X⊗S Z)
tS1

.

Then using this, we have a square

TC(X⊗S Z;Zp) TC(X⊗S THH(Fp);Zp)

(X⊗S Z)
hS1

(X⊗S Z)
tS1

where we have used this natural map on the right vertical arrow. This square is carte-
sian after we invert p.

Proof. Extend the previous square:

TC(X⊗S Z;Zp) TC(X⊗S THH(Fp);Zp)

(X⊗S Z)
hS1

(X⊗S THH(Fp))
hS1

(X⊗S Z)
tS1

(X⊗S THH(Fp))
tS1

Now use that the Tate construction is an equivalence on the bottom is an equivalence.
This allows us to produce the desired commutative diagram, by using the fact that the
boundary of this diagram is commutative.

To see it is cartesian after inverting p, it suffices to know that

(X⊗S THH(Fp))
hS1 → (X⊗S THH(Fp))

tS1 ≃ (X⊗S Z)
tS1

is an equivalence after inverting p. Then we use the previous theorem. □

Now we can prove what we actually want, which is the following square:



THE BEILINSON FIBER SQUARE 5

Theorem 2.4. The square

(1)

TC(R;Zp) TC(R⊗S Fp;Zp)

HC−(R;Zp) HP(R;Zp).

is commutative for R a ring, and cartesian after inverting p.

The point is that the top of this square agrees, after inverting p, with the bottom of our
original square.

The previous corollary essentially already gives this statement, it just needs a bit of addi-
tional work. Take X = THH(R;Zp) in the previous corollary, to obtain a square

TC(THH(R;Zp)⊗S Z;Zp) TC(R⊗S Fp;Zp)

(THH(R;Zp)⊗S Z)
hS1

(THH(R;Zp)⊗S Z)
tS1

The Zp is redundant in the top right, as we don’t need to p-complete after. As TC(X⊗S
Z;Zp) ≃ TC(X;Zp)⊗SZ, the top left can be changed to just haveTC(THH(R;Zp)⊗S
Z). This diagram is cartesian after inverting p, by the previous corollary.

Next, we make two observations for making this diagram what we want.

• For the bottom, there is a natural S1-equivariant map of spectra

THH(R;Zp)⊗S Z→ HH(R;Zp)

which is an equivalence after inverting p. We get maps

(THH(R;Zp)⊗S Z)
hS1 → HC−(R;Zp)

and (THH(R;Zp) ⊗S Z)
tS1 → HP(R;Zp). However, these need not be equiva-

lences after inverting p.

• For the top, we have a natural map THH(R;Zp) → THH(R;Zp) ⊗S Z. In par-
ticular, there is a map

TC(R;Zp)→ TC(THH(R;Zp)⊗S Z)

which is an equivalence after inverting p.

We use these maps to extend the commutative diagram:
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TC(R;Zp)

TC(THH(R;Zp)⊗S Z) TC(R⊗S Fp)

(THH(R;Zp)⊗S Z)
hS1

(THH(R;Zp)⊗S Z)
tS1

HC−(R;Zp) HP(R;Zp).

Now if we just use what we know so far about maps after inverting p, we see that using
the equivalence withTC(R,Zp) to replace the top left we get the desired commututative
diagram (1). We would need to know that the bottom square is cartesian after inverting
p to conclude that (1) is cartesian.

On the bottom horizonal fibers, the induced map is

Σ(THH(R;Zp)⊗ Z)hS1 → Σ(HH(R;Zp))hS1 .

This is an equivalence after inverting p due to THH(R;Zp) ⊗S Z → HH(R;Zp) being
an equivalence, and this is preserved after taking S1 homotopy orbits.

We conclude that the bottom square is cartesian after inverting p, andwe already knew the
top square is cartesian after inverting p. We conclude that (1) is cartesian after inverting
p.

Now we are ready for the proof of the main theorem: we do the same trick with stacking
cartesian squares.

Theorem 2.5. Assume R is commutative and henselian along (p). There is a carte-
sian square

K(R;Qp) K(R/p;Qp)

HC−(R;Qp) HP(R;Qp).

trGJ trcris

Proof. In this situation, we have now produced two cartesian square which stack on top
of each other. Namely, we have



THE BEILINSON FIBER SQUARE 7

K(R;Qp) K(R/p;Qp)

TC(R;Qp) TC(R/p;Qp)

HC−(R;Qp) HP(R;Qp)

tr tr

Here, we have used that TC(R ⊗S Fp;Qp) ≃ TC(R/p;Qp) is an equivalence. The rest
is identical.

Thus, we deduce the existence of the desired fiber square. What remains is to check that
the maps are actually the desired maps. On the left, we are using the cyclotomic trace
first. Mapping to HC−, we get the Goodwillie-Jones trace map.

On the right, we define the composition to be the p-adic chern character trcris. Later,
we’ll see that this actually makes sense. □

With this, we have proved the main theorem!

3. Applications

There is also a very interesting number theoretic consequence of this theorem. Suppose
we have a smooth proper scheme

X→ Spec(OK)

where K is a p-adic field, with special fiber Xk and generic fiber XK . We have a Chern
character

ch : K0(X;Q)→ K0(XK ;Q)→
⊕
i≥0

H2i
dR(XK/K).

The natural question, related to the Hodge conjecture, is to characterize exactly which
classes in de Rham cohomology arise from the Chern class.

Idea We can attempt to reduce the question to characteristic p, where we only need to
deal with the crystalline Chern character. In particular, there is a commutative diagram

K0(X;Q) K0(Xk;Q)

⊕
i≥0H

2i
dR(XK/K)

⊕
i≥0H

2i
cris(Xk/W(k))⊗W(k) K

ch chcris

∼

On the right, we now have the crystalline Chern class. As usually defined, this is a map

K0(Xk)→
⊕
i≥0

H2i
cris(Xk/W(k)).
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The idea is then the following: if we want to understand the image of ch, it suffices to un-
derstand the image of the reduction map K0(X;Q)→ K0(Xk;Q), and also understand
the crystalline Chern class. This would answer this form of the Hodge conjecture. The
guess for the image is then as follows:

Conjecture 3.1 (p-adic variational Hodge conjecture). A class α in even degree de
Rham cohomology H2∗

dR(XK/K) is in the image of ch precisely if:

• The image of α in the above diagram under the de Rham-crystalline compar-
ison lands in the image of the crystalline chern character.

• Additionally, the classα lies in
⊕

i≥0 Fil
≥iH2i

dR(XK/K) ⊆
⊕

i≥0H
2i
dR(XK/K).

Here, we use the Hodge filtration.

At the moment, this is out of reach. However, the theorem we just proved can make some
progress towards this question. To answer this, we equivalently need to understand when
a class in K0(Xk;Q) lifts to K0(X;Q). We can’t quite do this, but we can when we use
continuous K theory instead.

Definition 3.2. Let Kcts(X) := lim←−K(X/πn) for a uniformizer π ∈ OK .

Remark 3.3. The big picture plan here is that you are supposed to perform another
step, which is to relate this to lifting to K(X). The unfortunate truth is that this is
not the same as continuousK theory in general, but in some cases it is the same. For
example, if X is a smooth formal scheme which is locally of the form Spf(R) where
R is p-complete with bounded p-power torsion this should be true.

The target theorem is the following:

Theorem 3.4. A class x ∈ K0(Xk;Q) lifts to Kcts
0 (X;Q) if and only if

chcris(x) ∈
⊕
i≥0

H2i
cris(Xk/W(k))

is sent to
⊕

i≥0 Fil
≥iH2i

dR(XK/K) under the crystalline-de Rham comparison.

The Beilinson fiber square we produced before is nearly what we want: we just need to
apply the HKR isomorphism.

First, we derive a quick consequence of the main theorem.
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Theorem 3.5. LetX be a formal scheme over Spf(OK). AssumingX is smooth and
proper, there are cartesian squares

Kcts(X;Qp) K(Xk;Qp)

TCcts(X;Qp) TC(Xk;Qp)

HC−,cts(X/OK ;Qp) HPcts(X/OK ;Qp).

Proof. This follows from the extended diagram we drew before; we just appeal to the
Zariski descent of all these objects to reduce to the case ofX = Spf(R). In that case, writ-
ing this as an ind-scheme of schemes whose underlying ring has p nilpotent (i.e. henselian
along (p)), we deduce the result from the extended Beilinson fiber square we had earlier.

However, there is one catch. At the bottom, I have not written HC−,cts(X;Qp) and
similarly for HP, which is what this argument actually gives us.

Instead, this is done relative toOK . It turns out there is a homotopy cartesian diagram

HC−,cts(X;Qp) HPcts(X;Qp)

HC−,cts(X/OK ;Qp) HPcts(X/OK ;Qp).

This allows us to conclude the actual result using theHKR isomorphism, and thatLOK/W(k) ≃
0. □

Given this, the next step is to use the HKR isomorphism to reinterpret the crystalline
Chern character we had before.

Now the main idea is the following:

Lemma 3.6. We have isomorphisms

HPcts(X/OK ;Qp) ≃
∏
i∈Z

RΓdR(XK/K)[2i]

and
HC−,cts(X/OK ;Qp) ≃

∏
i∈Z

Fil≥iRΓdR(XK/K)[2i].
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Proof. This is the HKR isomorphism. □

With this, the theorem is proven assuming we can show that up to a scalar the map

K0(Xk;Qp)→ π0HP
cts(X/OK ;Qp) ≃

∏
i∈Z

H2i
dR(XK/K) ≃

∏
i∈Z

H2i
cris(Xk;Qp)⊗W(k)K

is the crystalline Chern character. This can be checked for the universal case of BGLn.
This proves main claim.
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