
THE ARC TOPOLOGY

1. Definition and motivation

The arc topology is a Grothendieck topology on Schqcqs which is very fine but yet many
useful constructions satisfy arc-descent.

In order, from coarse to fine, we have:

Zariski→ étale→ fppf→ arc.

The fact that the topology is so fine makes checking a statement arc-locally very powerful,
since you can often reduce to a very simple case.

Definition 1.1. An arc is a rank ≤ 1 valuation ring V. Letting K = Frac(V), this
means that we have a map

K×/V× ↪→ (R,+)

where we order K×/V× in the usual way by saying (V\0)/V× are the non-negative
elements. In other words, the associated valuation can be regarded as landing inside
of (R,+).

We will also refer to SpecV as an arc.

The reason for calling this an arc is that the typical example is something like SpecC[[x]],
and so it is locally given by a single parameter.

With this definition in place, we can directly define what an arc-cover is.

Definition 1.2. A morphism f : Y → X of qcqs schemes is an arc-covering if for
any morphism SpecV → X from any arc SpecV there is an extension SpecW →
SpecV of arcs (an injective local homomorphism on the valuation rings, or faithfully
flat morphism) such that we have a commutative diagram

SpecW Y

SpecV X.

f
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Visually, you should think of a morphism Y → X and asking that each arc in X has a
lift to one in Y. With this comes the usual way we define a Grothendieck topology after
defining the notion of a covering.

Definition 1.3. The arc-topology on Schqcqs is the Grothendieck site with coverings

{Yi X}i∈I
fi

such that for U ⊂ X an affine open there exists a finite set J along with ι : J → I
and Uj ⊆ f−1

ι(j)(U) for each j ∈ J such that
∐

j Uj → U is an arc-cover.

The restriction to qcqs schemes is somewhat superficial: a Zariski sheaf on Sch is uniquely
determined Schqcqs, and Zariski descent is a mild condition satisfied by all relevant exam-
ples. By restricting to qcqs schemes, we are able to give more reasonable criteria for being
a sheaf as the arc topology is finitary (meaning given a covering, a finite subset is a cover).

Definition 1.4. Let C be an∞-category, in our case typically D(Z)≥0. An arc-sheaf
F is a presheaf Schopqcqs → C such that

F (X) lim←−(F (Y) F (Y ×X Y) . . .)

is an equivalence for all arc covers Y → X and further carries finite disjoint unions
to finite products.

The reason we can make this as a definition is due to SAG A.3.3.1, which tells us this
criterion for the sheaf condition for a finitary Grothendieck topology. Otherwise, a priori
we need to check descent for every possible covering of Yi → X according to the previous
definition; this basically allow us to check just the condition on affine opens but globally.
This is where a scheme being qcqs and finite disjoint unions come into play.

From the original definition, it can be immediately seen that the topology is very fine.

Lemma 1.5. Any proper and surjective map is an arc-cover. Any faithfully flat cover
is an arc-cover.

Proof. For the first assertion, lift the generic point η of V first by surjectivity. Then the
valuative criterion of properness allows us to lift the closed point of V as well, showing
that we have an arc-cover.
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For a faithfully flat cover, we first lift the closed point of V using surjectivity. Then we
can lift the generic point η by using that flat morphisms can lift generizations (flat ring
maps satisfy going down). □

These two classes of arc-covers show that it is finer than most topologies you are used to.

However, it’s important to note that being an arc-cover is more restrictive than simply
being surjective.

Example 1.6. Take the blowup Ã2 of A2 at the origin, and remove a point p in the
exceptional locus of Ã2. Call the resulting scheme X. Then X → A2 is still surjec-
tive, but it is not an arc-cover because an arc going in the direction corresponding
to p does not have a lift.

The main idea for why we might consider using the arc-topology comes from the v-
topology, which is closed related. Here v stands for valuation, and the definition is pre-
cisely the same on qcqs schemes as the arc-topology except the condition on ranks of
valuation rings is removed. Many important functors we use satisfy v-descent already,
such as étale cohomology.

On Noetherian schemes with finite type morphisms, the v-topology has a very geometric
interpretation: it is generated by étale covers and proper surjections (which is why it’s not
surprising étale cohomology satisfies descent for it). Note also that it agrees with the arc
topology on such schemes.

One of the main results about the arc topology is that it is not too hard to deduce from
v-descent.

Theorem 1.7. Let F : Schopqcqs → D(Z)≥0 be a finitary functor. This means that
filtered limits with affine transition maps on schemes (e.g. an inverse system of affine
schemes) to filtered colimits.

Then the following are equivalent:

(1) F is an arc sheaf.

(2) (AIC-v-excision) F is a v-sheaf, and for every valuation ringV withFrac(V)
algebraically closed (called AIC) and p ∈ SpecV we have a cartesian square

F (SpecV) F (SpecV/p)

F (SpecVp) F (Specκ(p)).
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(3) (Milnor excision) F is a v-sheaf and sends any cartesian square

A A/I

B B/J

f

(where necessarily f : A → B carries I isomorphically into J) to a cartesian
square. Such squares are called Milnor squares.

Remark 1.8. We call this property excision because in topological spaces this refers
to H∗(X \ U,A \ U) ≃ H∗(X,A). This is equivalent to saying the square

H∗(X) H∗(X \ U)

H∗(A) H∗(A \ U)

is cartesian, since the fibers of the downward maps are relative cohomologies and iso-
morphic. We are asking a similar thing here: the morphism f , scheme-theoretically,
is an isomorphism on the open complement of B/J.

We will focus on showing (1) iff (2) first, as this is most important.

(1) implies (2). Let V be an AIC valuation ring. Then it is not difficult to verify

V→ Vp × V/p

is an arc cover, where p ∈ SpecV. We will use this to rewrite F (SpecV).

One proves this morphism is an arc cover by showing any map f : V → W to a rank
≤ 1 valuation ring factors through Vp×V/p. If it does, it must factor through one of the
components by connectedness. If f(p) = 0 then it factors through V/p and we are done.
Otherwise, there’s x ∈ p so f(x) ̸= 0, and we wish to show f factors over V → Vp. We
obtain a map induced by f as follows:

Vp → Vp[1/x] = V[1/x]→W[1/f(x)] ⊂ K = Frac(W).

Let W′ ⊂ K be the W-subalgebra generated by the image. We have f(x) ·W′ ⊆ W,
since x · Vp ⊆ V: given a

s
with a ∈ V and s ∈ V \ p, multiplication by x makes this

of the form a ∈ p and s ∈ V \ p. But then s|a (ideals totally ordered by inclusion in a
valuation ring) and a = sb for b ∈ p, we land in V.

Due to being rank≤ 1 (Krull dimension = number of subrings of fraction field containing
valuation ring), it follows W′ = W. We then see Vp → V[1/x] → W[1/f(x)] actually
lands inside W, so the map V→W must factor through Vp. The claim follows.
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Denote the target Vp × V/p by Ṽ. Then we claim the cosimplicial object

F (Ṽ⊗•+1)

computes (after totalization) the fibre product F (Vp) ×F (κ(p)) F (V/p). Here, we are
tensoring Ṽ over V.

In this setting Vp ⊗V Vp = Vp, V/p ⊗V V/p = V/p. More importantly, κ(p) will
ultimately arise since Vp ⊗V V/p = κ(p). Now we appeal to the fact that F preserves
finite products to obtain for F (Ṽ⊗•+1)

F (Vp)×F (V/p) F (Vp)×F (κ(p))×2 ×F (V/p) . . .

In general, we’ll get a number of copies of F (κ(p)) in between. If we were working in a
1-category, the claim is now clear since the fiber product A×B C is just the equalizer

A× B C

This computes the same thing as the diagram with A×C×2×B where the maps to A,B
are the canonical projections and the maps to the copies of C are the same (projections
plus the canonical map to C). Note that the two maps to A × C×2 × B just swap the
order, so the equalizer won’t change.

In an∞-category, it is more complicated. It is similar to but not quite identical to the
totalization A×C• ×B computing A×C B, but the number of copies of C is different.

Once this is established, the claim is clear. We know that by arc-descent F (Ṽ⊗•+1)
computes F (V), so then F (Vp) ×F (κ(p)) F (V/p) ≃ F (V). But this is just telling
us the AIC v-excision square we wanted is cartesian. □

One thing to note is that v-sheaves can fail excision, so (2) implies (1) has content. Indeed,
V→ Ṽ = Vp×V/p is not a v-cover in general, and in (1) implies (2) we showed descent
for this map is equivalent to excision for AIC valuation rings. Take V to have rank ≥ 2

and let p be nonzero and nonmaximal (possible due to the rank). Then V → Ṽ is not a
v-cover. Assume we have an extension V → W of valuation rings. To rule out being a
v-cover, it suffices to show that we cannot factor this as V → Ṽ → W as this rules out
lifting the identity map SpecV → SpecV. Now SpecW → SpecV is surjective and
SpecW is connected. Noting Spec Ṽ is a disjoint union of SpecVp and SpecV/p and
elements of m \ p in Vp are invertible (remember we need a local homomorphism of local
rings) this has to factor as V→ V/p→W. But there is a nontrivial kernel.

For (2) implies (1), we will need the following notion.
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Definition 1.9. Let F be a functor Schopqcqs,R → D(Z)≥0. We say that a map f :

Y → X of qcqs schemes over SpecR is of F -descent if the natural map

F (X) lim←−(F (Y) F (Y ×X Y) . . .)

is an equivalence. It is of universal F -descent if all base changes along morphisms
to X of this morphism are of F -descent.

Definition 1.10. A family of morphisms {Xi → X} detects universal F -descent
when f : Y → X is of universal F -descent if and only if all of the base changes
Y ×X Xi → Xi are of universal F -descent.

Note that morphisms of universal F -descent are stable under base change, so only one
direction is interesting.

Sketch of (2) implies (1). Let f : Y → X be an arc cover. We need to check that F satisfies
descent for f given that it is a v-sheaf and satisfies excision on AIC valuation rings.

The first reduction uses the following lemma:

Lemma 1.11. Let A be a ring, and F a finitary v-sheaf. Then there is a family of AIC
valuation rings Vi such that {fi : A→ Vi} detects universal F -descent.

Since Zariski descent is given, we can now use this lemma and stability of arc covers under
base change to reduce showing universal F -descent for arc covers

SpecA→ SpecV

where V is an AIC valuation ring. We can write A as a filtered colimit of arc covers of V,
and then use the fact that morphisms of universal F -descent are preserved under filtered
colimits of rings.

The key observation is then that ideals in SpecV form a poset under inclusion, and each
interval I = [p, q] has an associated AIC valuation ring Spec(V/p)q.

The idea is to work out way up from universal descent of VI → A⊗VVI when len(I) ≤ 1
up to V→ A.

In this initial case where len(I) ≤ 1, we use the crucial fact that a cover is an arc-cover
if and only if all of its base changes to rank ≤ 1 valuation rings (e.g. VI in this case) are
v-covers. Noting v-covers are preserved under base change, we get universal descent when
len(I) ≤ 1.
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We can make some simple verifications at this point, using that VI → A ⊗V VI being a
v-cover suffices for universal F -descent.

• If J ⊂ I, since morphisms of universal F -descent are stable under base change we
get descent for VJ form VI.

• If p is not maximal, we can find q so I = [p, q] gives a v-cover VI → A ⊗V VI.
Indeed, assuming there’s no immediate successor to p (already covered by len(I) ≤
1) we have

κ(p) = lim−→
I′=[p,q′]

VI′

over q′ ⊃ p. Butκ(p)→ A⊗Vκ(p) is a v-cover (by the original case) and from this
one can deduce of the terms VI′ gives a v-cover (this uses the finite presentation
hypothesis on A).

• Similarly, we can do the same for finding p when q ̸= 0 so we have universal
descent for V[p,q] → A⊗V V[p,q].

The key thing to putting these together in order to get I = SpecV is the ability to de-
duce universal descent for VI∪J given that I ∩ J ̸= ∅ and universal descent for VI,VJ.
Combinatorially, this is enough to deduce the claim for I = SpecV and complete the
argument.

By base change you can assume I ∪ J = SpecV, in which case we want to prove for any
V-algebra B that

F (B) F (B⊗V VI)

F (B⊗V VJ) F (B⊗V VI∩J).

is cartesian. It then follows from formal properties of universal descent that the collection
{V → VI,V → VJ,V → VI∩J} detects universal F -descent for V → B. That is, we
can deduce universal descent for V → B from universal descent for V → B ⊗ VI,
etc in the diagram, so we just need to put B = A. To see this, in F (B⊗V•) since this
cartesian square holds for all B we can write each of the terms as the appropriate fiber
product. Then when computing the totalization, we use F -descent for the terms in the
fiber product and compatibility of fiber products and limits.

To prove this, one further reduces to the case where I∩J is a singleton using a 2/3 argument
for cartesian squares. This is then possible to deduce from excision, which implies its
variant

F (B) ≃ F (B⊗V Vp)×F (B⊗Vκ(p)) F (B⊗V V/p).

□
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(1) implies (3). We can reduce to the case of an AIC rank ≤ 1 valuation ring A after not-
ing that we can check isomorphisms of arc sheaves on such rings and stability of Milnor
squares under base change to an integral domain.

The exact same argument we used for the excision datum (V → Vp, p) to argue any
morphism V→W for W a rank≤ 1 valuation ring factors through Vp×V/p shows for
a general excision datum the same holds for maps A→W factoring as A→ B×A/I→
W. Then in our excision datum (A→ B, I) either A→ A/I admits a section or A→ B
admits a section s via the identity map A→ A as A is an AIC rank ≤ 1 valuation ring.

In the first case where A→ A/I admits a section it’s trivial as I = 0. In the second case,
we do a 2/3 property argument with cartesian squares to reduce to the case s : B→ A is
surjective. That is, we get a diagram

A A/I

B B/J

A A/I

s s

where trivially the outer square is cartesian, so by the 2/3 property for cartesian squares
the top square is cartesian if the bottom is. However, the bottom reduces us to checking
Milnor squares with a surjective map of the form

B B/J

A A/I

s s

are sent to cartesian squares.

In this scenario, Milnor excision now more easily holds. We can again localize to B being
an AIC valuation ring by the same technique and then either B → A or B → B/J are
isomorphisms (since ideals are totally ordered). □

2. Proving arc-descent for etale cohomology

The main theorem I will be focusing on is proving arc-descent for étale cohomology, using
the criterion in 1.7.
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Theorem 2.1. Let Λ be a finite ring. Then the functor

X 7→ RΓ(Xét,Λ)

is a finitary arc-sheaf on Schopqcqs.

More generally, let F be a torsion étale sheaf on (SpecR)ét. Then the functor

(X, f : X→ SpecR) 7→ RΓ(Xét, f
∗F ) ∈ D(Λ)

is a finitary arc-sheaf on Schopqcqs,R.

Following the theorem, the first step is going to be proving v-descent for étale cohomol-
ogy.

Lemma 2.2. Fix a functor F : Schopqcqs,R → D(Z)≥0, and let f : Y → X and
g : Z → Y be morphisms in Schopqcqs,R. Then if f has a section, it is of universal
F -descent.

Proof. This means there is a morphism s : Y → X so f ◦ s = id. This yields a splitting of
the cosimplicial diagram

F (Y) F (Y ×X Y) . . .

which then implies descent. More concretely, reducing to the case of a ring you can write
explicit contracting homotopiesB⊗An → B⊗A(n−1) via sending b1⊗. . .⊗bn 7→ s(b1)b2⊗
. . . bn. Upon base change, we just get a base changed section. □

We are now ready to prove v-descent of étale cohomology.

Theorem 2.3. Let F be a torsion étale sheaf on (SpecR)ét. Then the functor

(X, f : X→ SpecR) 7→ RΓ(Xét, f
∗F )

satisfies v-descent for Schopqcqs,R.

Proof. The idea comes from the earlier remark that the v-topology is not too different
from the h-topology. Specifically, let Y → X be a v-cover of qcqs schemes. Since we
are in the qcqs setting, we can write Y as a filtered limit of a tower of finitely presented
X-schemes with affine transition maps.

Now étale cohomology will turn such a limit into a filtered colimit, we can reduce to
the case that Y → X is finitely presented. If we had a Noetherian assumption, at this
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point we could reduce to verifying étale covers and proper surjections by comparing to
the h-topology. The first class is obvious; the second is possible to tackle with proper base
change for étale cohomology.

Fortunately without this assumption we can use a similar strategy. It is known that a
finitely presented morphism of qcqs schemes can be factored into a quasi-compact open
covering and a proper finitely presented surjection.

For a quasi-compact open covering, similar to étale covers, the descent is immediate. We
are then left with tackling proper finitely presented surjections.

The étale topos has enough points, which means isomorphisms can be tested stalkwise.
For descent, we want an isomorphism to the Cech-Alexander complex

RΓ(Xét, f
∗F ) ≃ RΓ(Y•

ét, f
∗F )

in the case Y → X is a proper finitely presented surjection. The isomorphism can be
tested stalkwise, so we may assume that X is the spectrum of a strictly Henselian local
ring.

By proper base change, we have RΓ(Yét, f
∗F ) ≃ RΓ((Yx)ét, f

∗F ) where x ∈ X is the
closed point with residue field κ(x). By topological invariance of étale cohomology, we
are free to base change to the algebraic closure without changing the value of the functor.
However, after base change we obtain a section Yx × x → x, which implies universal
descent. Thus, we get descent for the map Yx → x, which proves the theorem. □

Note that the torsion hypothesis is largely present because proper base change requires it.

The next step is to verify excision.

Proposition 2.4. The étale cohomology functor

RΓét : Sch
op
qcqs,R → D(Z)≥0

sending (X, f : X→ SpecR) 7→ RΓ(Xét, f
∗F ) satisfies AIC-v-excision.

Proof. To apply Theorem 1.7, we need to check étale cohomology is a finitary functor. This
is true since étale cohomology commutes with filtered colimits of rings. It then suffices
to check the AIC-v-excision condition.

We first note that an absolutely integrally closed valuation ring V, the type used for AIC-
v-excision in Theorem 1.7, is strictly Henselian.

Let m ⊂ V be the maximal ideal. By virtue of being AIC, given a monic polynomial in
V[x] it splits into linear factors (we work in a domain). Now given f ∈ V[x], splitting it
into linear factors yields a splitting of f ∈ V/m[x] into linear factors. Thus we see V is



THE ARC TOPOLOGY 11

Henselian, as any factorization of f breaks into these linear factors which we can lift. It
is strictly Henselian since the residue field is then also algebraically closed.

Fix an AIC valuation ring V over SpecR and p ⊂ V. Any reduced quotient of a local-
ization is also an AIC valuation ring, hence strictly Henselian. We learn that V and V/p
are strictly Henselian valuation rings, and have identical residue fields. By standard facts
about étale cohomology, we see

RΓét(V) ≃ RΓét(V/p).

For the same reasons, RΓét(Vp) ≃ RΓét(κ(p)). We therefore have a cartesian square

RΓét(SpecV) RΓét(SpecV/p)

RΓét(SpecVp) RΓét(Specκ(p)).

It follows from Theorem 1.7 that RΓét is an arc sheaf. □

3. Descent in mixed characteristic

In mixed characteristic one uses the arcp topology. The appropriate definition is essen-
tially the same, but we add some p-completeness conditions.

Definition 3.1. A ring R is derived p-complete if

HomD(R)(S,R) = 0

for S ∈ D(R[1/p]).

A ring R is also derived p-complete if and only if

ExtiR(R[1/p],R) = 0

for i = 0 and i = 1. This is generally easier to check.

If it is derived p-complete and p-adically separated, it is classically p-complete.

Example 3.2. We’d like Zp to be derived p-complete. We have (Zp)p = Qp. It is
indeed true that HomD(Zp)(S,Zp) = 0 for S a complex of Qp vector spaces regarded
as Zp-modules. More generally, a p-adically complete Z-module R has

HomD(Z)(S[1/p],R) ≃ lim
n

HomD(Z)(S[1/p],R/p
n) = 0

via classical p-completeness.
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With a more well-behaved notion of completeness for arbitrary rings, we are ready to
define the arcp topology.

Definition 3.3. A p-arc is a rank ≤ 1 valuation ring which is p-complete and has
p ̸= 0.

An arcp-cover is a map R → S of algebras which are derived p-complete such that
for every map R → V for SpecV a p-arc there is an extension R → V → W of
p-arcs extending over S.

This gives a notion of an arcp-sheaf on CRingopR,p, where the subscript p means the ring is
derived p-complete. This generalizes in the usual way to qcqs schemes which are derived
p-complete.

We can also similarly define an arcp topology on p-adic formal schemes, which is useful
in prismatic cohomology.

Definition 3.4. Consider the category fSchp of p-adic formal schemes. We call a
mapY→ X of qcqs p-adic formal schemes an arcp cover if for every mapSpf V→ X
where V is a p-arc has a faithfully flat extension to Spf W→ Y where W is a p-arc.

We give the category a Grothendieck topology in the usual way.

Definition 3.5. An integral perfectoid ring R is a p-complete ring such that R/p is
semiperfect, the kernel of θ : W(R♭) → R is principal, and there is π ∈ R so πp is
a unit multiple of p.

If R has no p-torsion, then the condition on Fontaine’s map is equivalent to if x ∈ R[1/p]
and xp ∈ R then x ∈ R. In characteristic p, an integral perfectoid ring is just a perfect
ring. We can also verify this condition by checking (−)p : R/π → R/πp is an isomor-
phism.

Theorem 3.6. Any derived p-complete scheme X admits an arcp-cover of the form
Spec(R) where R is an integral perfectoid ring.

Proof. We may assume X = SpecA. First, we explain the important idea of the con-
struction for making a v-cover. If we take κ = max(|A|,ℵ0) and let {Ai} be a set of
isomorphism class representatives of AIC valuation rings which are A-algebras of cardi-
nality at most κ. Then A →

∏
iAi is a v-cover, since for any morphism A → V we
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can enlarge V to assume it is AIC as there is an extension of valuation rings V → V′

with V′ AIC. Then this map f : A → V′ can be factored further into A → V′′ → V′

with V′′ → V′ an extension, and V′′ AIC with cardinality at most κ: we set K to be the
algebraic closure of the fraction field of im(f) so |K| < κ and put V′′ = V′ ∩K . Thus,
A→ V′′ actually factors through

∏
iAi (up to an isomorphism) so we are done.

An extremely similar argument shows that if we do the same but take rank≤ 1 valuation
rings we get an arc cover; denote this by

A→
∏
v

A+
v

where A+
v are all the AIC rank ≤ 1 valuation rings. Upon p-completion of each A+

v , the
same argument shows this is an arcp cover.

It now suffices to check Â+
v is integral perfectoid, as arbitrary products of integral per-

fectoid rings are integral perfectoid. This follows from the definition and that Ainf(R) =
W(R♭) commutes with arbitrary products.

Consider the more general case of taking p-completion of an absolutely integrally closed
domain V (every monic polynomial admits a root). If V is an Fp-algebra, due to xp − α
having a root Frobenius is surjective. It is also reduced, so Frobenius cannot have any
kernel and hence V is perfect.

If V is in mixed characteristic we can pick πp = p due to being p-torsion free and being
absolutely integrally closed applied to xp − p. Moreover, V/p is semiperfect by the same
argument. To see V̂p is integral perfectoid the only condition left to check is that ker θ is
principal, which can be done by checking (−)p : V/π → V/πp is an isomorphism (this
is preserved after p-completion). Due to being AIC, we can always find preimages so get
surjectivity. Injectivity is automatic in this setting once we have πp|p: if x (mod π) is
sent to zero under (−)p, xp = πpy for some y ∈ V. But then x/π ∈ V[1/π] lies in V, as
the pth power (namely y) does. It follows that x (mod π) was zero. □

This is especially useful when working with étale cohomology, since it allows us to use
arc-descent to reduce to the perfectoid setting and then we can apply tilting to reduce to
charactistic p, giving us a way to move from mixed characteristic to characteristic p. We
will see this technique used later in the proof of the étale comparison theorem for étale
cohomology.

Corollary 3.7. Let F be a torsion étale sheaf on SpecR, where R is derived p-
complete. The functor

RΓét : CRing
op
R,p → D(Z)≥0
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sending

(Spec S, f : Spec S→ SpecR) 7→ RΓ(Spec Ŝp[1/p]ét, f
∗F )

satisfies arcp-descent.

Proof. It suffices to check descent for an arcp-covering of rings R → S. But given such a
covering, we note

R→ S× R/p× R[1/p]

is an arc-covering. Indeed, let SpecV → SpecR be an arc mapping into SpecR. We
want to produce a commutative diagram

SpecW Spec S× R/p× R[1/p]

SpecV SpecR

where SpecW is an arc extending SpecV.

The image of p under a ring map R→ V is one of the following:

• A nonzero element of m. Then we may replace V by its p-completion without
harm, and then use that R→ S is an arcp cover to find W.

• Zero, in which case W = V works where we map SpecW→ SpecR/p.

• A unit, in case we do the same but with SpecR[1/p].

The operations of derived p-completion and inverting p kill both, hence we get an arcp-
sheaf by arc-descent of étale cohomology. □

4. GAGA

The arc-topology allows for a quick proof of the following result. The claim is a bit more
general, but I want to highlight a useful subcase at the benefit of removing some termi-
nology from the statement.

Theorem 4.1 (Rigid GAGA). LetA be a Noetherian ring which is Henselian along p
(e.g. p-adically complete, or p-torsion). LetX be a properA[1/p]-scheme and denote
Xad the associated adic space over Spa(A[1/p],A). For any torsion étale sheaf F
on X, write F ad for the pullback to Xad. The natural map gives an isomorphism

RΓ(X,F ) ≃ RΓ(Xad,F ad).

The main theorem we’ll want to apply for this is a formal gluing result.
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Definition 4.2. A formal gluing datum of rings is a pair (A→ B, I) where A→ B
is a map in CRing and I ⊂ A is a finitely generated ideal such that A/In ≃ B/InB
is induced by the map A→ B for all n ≥ 0.

Note that this comes with a square

SpecA SpecB

SpecA \ V(I) SpecB \ V(IB).

We will want to show that we get a cartesian square after applying an arc-sheaf to all
schemes in this diagram.

Theorem 4.3 (Formal gluing for arc-sheaves). Let F : Schopqcqs,R → D(Λ)≥0 be a
finitary arc-sheaf. If (A → B, I) is a formal gluing datum of R-algebras, then we
have a cartesian square

F (SpecA) F (SpecB)

F (SpecA \ V(I)) F (SpecB \ V(IB)).

Sketch. We give a sketch assuming reduction to where A is an AIC valuation ring of rank
≤ 1 (this follows from showing equivalence of arc-sheaves can just be checked on such
rings).

Then either A is I-adically complete or I is the unit ideal. If I is the unit ideal, the square
is trivial. If A is I-adically complete, then using A/InA ≃ B/InB we obtain a map

B→ B̂ ≃ A

which is a section of A→ B.

Call the section s. Consider the diagram

F (SpecA) F (SpecB) F (SpecA)

F (SpecA \ V(I)) F (SpecB \ V(IB)) F (SpecA \ V(I)).

s∗

s∗

The right square can be shown to be homotopy cartesian. Indeed, s : B→ A is surjective,
and in this case as A is a valuation ring either I = A in which case it’s trivial or I ⊆ m
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in which case A/InA ≃ B/InB forces A = B and the claim is again trivial. By the 2/3
property the left square is also homotopy cartesian, and we are done. □

Proof of GAGA via formal gluing. By Nagata compactification, there exists a properA-scheme
X extending X. For this, we have

X×SpecA SpecA[1/p] ≃ X.

Let F̃ be a torsion étale sheaf on X extending F , and put X̂ for the p-adic completion
of the scheme X. We have a cartesian square in locally ringed topoi

Xad X̂

X X.

where we take the associated étale topology on each locally ringed space in the square.

Via pullback, F̃ defines a sheaf on each of the topoi in the square (which we all denote by
F̃ ). We claim that applying RΓ(−, F̃ ) to the square yields a cartesian square. Covering
X by affines, by pullback we get affine (or affinoid for Xad) covers of each of X,X, X̂,Xad.

By the affinoid comparison theorem and using these covers to compute cohomology, it
suffices to check the affine case. But in the affine case this follows from formal gluing for
étale cohomology, using the formal gluing square

A Âp

A[1/p] Âp[1/p].

Now knowing that applying RΓ(−, F̃ ) to the square yields a cartesian square, we can
deduce the main result. Note that proper base change gives an isomorphism

RΓ(X, F̃ ) ≃ RΓ(X̂, F̃ ).

Being a cartesian square, the claim follows. □
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