
THE ALMOST PURITY THEOREM

1. Almost purity

In this setting, if K is a perfectoid field, we have the following more classical definition
of a perfectoid ring:

Definition 1.1. A perfectoid ring R over a perfectoid field K is a complete uni-
form Tate K-algebra R (meaning R0 is open and bounded) and there is a pseudouni-
formizer (topologically nilpotent unit) π ∈ R such that πp|p and the Frobenius map

R◦/π → R◦/πp

is an isomorphism.

Remark 1.2. This is completely fine with Banach K-algebras as well.

The definition does not depend on the choice of pseudouniformizer.

Lemma 1.3. In the previous definition, we can replace the conditions after uniform
Tate K-algebra with R◦/p ↠ R◦/p. In particular, the choice of pseudouniformizer
doesn’t matter.

Proof. The map R◦/π → R◦/πp is automatically injective when πp|p. Given an element
x ∈ R◦, if x (mod π) is sent to zero under Frobenius, xp = πpy for some y ∈ R◦. But
then x/π ∈ R lies in R◦, as the pth power (namely y) does. It follows that x (mod π)
was zero. Note that also that if we only assume R◦/p ↠ R◦/p, such π exists since K is
perfectoid.

Hence, the task is to show R◦/π ↠ R◦/πp if and only if R◦/p ↠ R◦/p. One direction
is easy: if we get surjectivity modulo p, then R◦/π ↠ R◦/πp. Indeed, we have a square

R◦/p R◦/p

R◦/π R◦/πp

Φ

Φ

Now every map is surjective except the bottom, so the claim follows.
1
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In the other direction, successive approximation using surjectivity of the bottom arrow
shows any x ∈ R◦ has the form

x =
∑
i≥0

πpixp
i

for xi ∈ R◦. It follows

x− (x0 + πx1 + π2x2 + . . .)p ∈ pR◦

by expanding. Thus, we can get any element of R◦/p from Frobenius: take your desired
element, find a lift x, use the above to find x0+πx1+π2x2+. . ., then reduce this modulo
p. □

Example 1.4. A nice example is Qp(p
1/p∞)∧⟨T1/p∞⟩. Here, Qp(p

1/p∞)∧ is a perfec-
toid field since the value group is clearly not discrete. The valuation ring isZp[p

1/p∞ ]∧,
and modulo p it’s semiperfect since

Zp[p
1/p∞ ]∧ ≃ (Zp[t

1/p∞ ]/(t− p))∧

and reducing this mod p gives Fp[t
1/p∞ ]/t which is semiperfect hence Frobenius is

surjective.

The Tate algebra structure is given by taking R◦ = Zp[p
1/p∞ ]∧⟨T1/p∞⟩ and picking

a psuedouniformizer π.

ThenR◦ is open and powerbounded, so it remains only to check surjectivity of Frobe-
nius on R/p. A similar calculation shows we get another semiperfect ring.

The target theorem is the following.

Theorem 1.5 (Almost purity). Let R be perfectoid ring. For any finite étale R-
algebra S, we know S is perfectoid and the algebra S◦ is almost finite étale over R◦.

More generally, take a perfectoid affinoid K-algebra (R,R+). Then R+a
fét ≃ Rfét.

Let me give an example which illustrates the reason for the name.

Theorem 1.6 (Zariski-Nagata purity). Let X/C be a smooth scheme. For a finite
morphism f : Y → X with Y smooth, the ramification locus of f is pure of codi-
mension one.

The following example clarifies how to fix ramification along divisor in the local situation.
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Example 1.7. Let R be a complete regular local ring over C, and f a regular param-
eter (so m = (f)). Then

πét
1 (SpecR \ {f = 0}) ≃ Ẑ,

with the étale cover for Z/nZ explicitly being given by SpecR[ n
√
f ] → SpecR \

{f = 0}.

The thing to have in mind is C[[x]], with m = (x). This is geometrically a unit disk;
removing 0 makes it punctured, i.e. C((x)). The covering maps for punctured disk
as the same as the circle, you look at C[[x1/n]].

The almost purity theorem can be considered as an analogue of this theorem, which I’ll
explain by example (shamelessly stolen from Scholze on mathoverflow).

Consider the rings
Rm = Zp[p

1/pm ,T±1/pm ].

Then R0 = Zp[T
±] is a torus. These are all smooth over Zp[p

1/pm ]. Suppose we are
handed some finite normal R0-algebra S0, and we know that S0[1/p] is étale. The thing
that prevents S0 from being étale is that there is some possible ramification on the special
fiber.

The idea is to attempt to fix this by using the ramified tower Rm, and setting Sm :=
Norm(S0 ⊗R0 Rm), where here we take the normalization of this tensor product.

This almost gets rid of the ramification when we look at Sm → Rm. Take for example
S0 = R0[x]/(x

2p − p), and assume p is odd. Then the formal derivative 2px2p−1 is going
to be invertible in

R0[x][1/p]/(x
2p − p),

as 2p is now invertible, so we just check if 2x2p−1 is invertible. But 2x2p−1 ·x = 2p, which
is again invertible in R0. Thus, R0 → R0[x][1/p]/(x

2p − p) is standard étale.

Then we can note that
S0 ⊗R0 Rm ≃ Rm[x]/(x

2p − p).

Note thatx2 and p1/p both have pth powers equal to p. However, this means in the fraction
field (x2/p1/p)p = 1, but x2/p1/p is not in the ring. Thus, it is not normal.

The ring Sm will be normalized to become Rm[x]/(x
2 − p1/p), which is the same as ad-

joining p1/(2p
m). That is, we look at Rm[p

1/(2pm)]. However, this will still not be quite
étale as p1/pm is not a unit.

We can measure this by looking at the ramification over the local ring of the generic
point of the special fiber. Viewing the special fiber as a divisor in Rm, its generic point
will have a local ring which is a DVR Om,s with fraction field Qp(p

1/pm)(T±1/pm). Thus,
understanding this amounts to knowing the different.
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The ramification calculation amounts to understanding the ramification ofOm,s[p
1/(2pm)]

over Om,s. This ends up being exactly the same calculation Kush made: the different
p1/2p

m tends towards a unit, as its valuation goes to zero. You can cook up similar exam-
ples, like R0[x]/(x

2p − T), and the same sort of thing happens. Here, moving to Rm the
normalization similarly forces x2 = T1/p, as (x/(T1/p))2 = 1. However, this case is a bit
different: the same computation gives a unit for R1!

If we suppose the ramification on the generic point of the special fiber actually becomes
trivial for some m, then Zariski-Nagata purity saves the day. Indeed, the ramification
locus of Sm over Rm has to be pure of codimension one, and we know what these points
are. They are either characteristic zero in which case S0[1/p] being étale takes care of it,
or they are the generic point of the special fiber. We have just ruled out the latter, so there
must be no ramification at all.

Almost purity, as stated above, tells us that it is always the case that S∞ becomes almost
étale over R∞.

Now, how do we prove this theorem? There is an almost isomorphism R+ → R◦, so
it suffices to prove it for R◦. So far, we have completed the following diagram for R
perfectoid:

Rfét R◦a
fét (R◦a/π)fét

R♭
fét R♭◦a

fét (R♭◦a/π♭)fét

∼

∼

∼
∼

where the arrow on the bottom left is because we know almost purity in characteristic
p. What remains is almost purity, or rather showing the top morphism is actually an
isomorphism.

From tilting, we know already R♭
fét → Rfét is fully faithful. Also, we know the theorem

in the case of a field. Thus, the real content of the theorem is that the functor is actually
essentially surjective in general outside of the case of a field.

The idea of the proof is to use the geometry of the perfectoid space Spa(R,R+) to localize
and reduce to the case of a field, where we already know the full story.

This crucially uses rigid analytic geometry: if we were to try the same strategy withSpecR,
the stalks would be far from correct since we need to get an actual field after completion.
There are not enough opens in the Zariski topology to accomplish this.

For this, we will need some definitions in rigid analytic geometry.

2. Perfectoid spaces: crash course

The formalism for perfectoid spaces I will use here is Huber’s adic spaces, because this is
largely what has been adopted in many papers that use these objects.
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Let K be a non-archimedean field. The idea of rigid analytic spaces or more generally
adic spaces is to try to emulate what happens with complex analytic spaces over C in a
non-archimedean setting. There are several models of rigid-analytic geometry one can use.
I’ll be using adic spaces since Scholze uses these for perfectoid spaces.

On important requirement is that there should be an analytification functor

VarK → {rigid analytic spaces/K}
and we should also expect some form of GAGA to hold when the variety is proper. An-
other important thing is that unlike algebraic geometry, for f ∈ Γ(Xad,OXad) we should
be able to make sense of not just the vanishing locus of f but also the set {x ∈ Xad :
|f(x)| ≤ 1}. As we’ll see, this is essentially the added content that makes it analytic
when compared to algebraic geometry.

This idea means that we ought to be able to attach, for any x ∈ Xad, a valuation function

f 7→ |f(x)|
on functions. Let me be precise about what valuation means - these are really more like
seminorms, but this is the usual terminology.

Definition 2.1. Let R be a ring. A valuation on R is a multiplicative map

| · | : R → Γ ∪ 0

where Γ is a totally ordered abelian group (written multiplicatively). We ask that
|0| = 0, |1| = 1 and also

|x+ y| ≤ max(|x|, |y|)
for all x, y ∈ R.

We say two valuations are equivalent if for all a, b ∈ R we have |a| ≥ |b| if and only
if |a|′ ≥ |b|′.

If R has a topology, which will be the case in our situation, we ask that {x ∈ R : |x| < γ}
is always open.

Our next task is to define the equivalent of affine schemes in the rigid analytic world,
affinoids. In the adic space formalism, these are specified by a pair of rings (R,R+) to
which we associate a space Spa(R,R+) of certain continuous valuations on R.

We will restrict ourselves to the case of algebras over a non-archimedean field, as the full
generality of Huber’s theory isn’t needed here.
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Definition 2.2. A Tate K-algebra R is a topological K-algebra R for which there
exists a subring R0 ⊂ R such that aR0 for a ∈ K× forms a basis of open neighbor-
hoods of 0.

This comes with a ring R◦ that consists of powerbounded elements. This means R◦

consists of x ∈ R such that {xn : n ≥ 0} ⊂ aR0 for some a.

An affinoid K-algebra is a pair (R,R+) consisting of a Tate K-algebra R and an
open integrally closed subring R+ ⊂ R◦. A morphism of affinoid K-algebras is a
K-algebra map R → S carrying R+ to S+.

The typical example takes R to be a quotient of K⟨Ti⟩, and R+ = R◦ = K◦⟨Ti⟩. In
everything that follows, |f(x)| denotes the valuation x applied to the function f ∈ R.
We use [x] to denote the equivalence class of a valuation.

Definition 2.3. Given an affinoid K-algebra (R,R+), we give Spa(R,R+) :=
{[x] : |f(x)| ≤ 1, f ∈ R+} the topology with basis given by the open rational
subsets

U

(
f1, . . . , fn

g

)
:= {x ∈ Spa(R,R+) : |fi(x)| ≤ |g(x)| ≠ 0}.

Here, fi generate the unit ideal. Essentially, we ask that |g(x)| ≠ 0 is open (likeD(g)
in algebraic geometry) and |f(x)| ≤ 1 is open (a feature we want in rigid geometry).

This topological space only depends on the completion of R. Hence, from now on we will
assume (R,R+) is complete.

We will eventually want to make this the underlying topological space in an upgraded
notion of a locally ringed space; the role is analogous to SpecR in algebraic geometry.

The pair (R,R+) should be thought of as R providing functions to (A1
K)

ad, and R+

providing functions to the adic unit disk Spa(K⟨T⟩, K◦⟨T⟩) (in particular, it’s functions
which are ≤ 1 and hence ‘summable’).

This is literally true once the correct definitions of these are in place.

I want to first demystify the integrally closed condition on R+: it actually doesn’t make
any change in generality.

Lemma 2.4. There is a bijection between sets of equivalence classesFS =
⋂

f∈S{[x] :
|f(x)| ≤ 1} for non-empty subsets S ⊂ R◦ and open and integrally closed subrings
R+ ⊆ R◦.
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We send
R+ 7→ Spa(R,R+) = {[x] : |f(x)| ≤ 1, f ∈ R+},

and
FS 7→ {f ∈ R : |f(x)| ≤ 1 for all x ∈ FS}.

The conditions on R+ (being an open and integrally closed) arise naturally as a result of
this lemma.

Thus, we can think of the set Spa(R,R+) as imposing the condition |f(x)| ≤ 1 for f in a
particular subset on the space of valuations. Taking R+ = R◦ means we impose the most
conditions. It is not reasonable to ask for such a bound when f is not power bounded. In
summary, R+ is really just encoding which functions f ∈ R are ≤ 1, or the functions to
the unit disk.

I also want to explain why it is necessary to allow possibilities for R+ other than R◦.
Indeed, if you look at classical rigid geometry we only use this. One important reason is
that even when defining Spa(R,R◦) we would want the open rational subsets to again be
affinoids.

Definition 2.5. Let U
(

f1,...,fn
g

)
be a rational open in Spa(R,R+). Let

B ⊆ R

[
fi
g

]
⊆ R[g−1]

be the integral closure of R+[fi
g
] in R[fi

g
]. Topologizing R[fi

g
] by making aR0[

fi
g
]

for a ∈ K× a basis of opens at 0, we get an affinoid K-algebra (R[fi
g
],B). Upon

completion, we get (R⟨fi
g
⟩, B̂).

This pair has a universal property that shows it depends only onU: that for a map (R,R+) →
(S, S+) factoring over U with (S, S+) complete there is a unique map(

R

〈
fi
g

〉
, B̂

)
→ (S, S+)

making the obvious diagram (
R
〈

fi
g

〉
, B̂

)
(S, S+)

(R,R+)

commute.
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Note that completion preserves the adic spectrum and gives better behaved rings which
is why we performed this operation.

Having noted the independence fromU, define presheavesOX(U),O+
X(U) onX = Spa(R,R+)

by

(OX(U),O+
X(U)) =

(
R

〈
fi
g

〉
, B̂

)
on rational opens, and for general opens by taking a limit:

OX(W) = lim
U⊆W rational

OX(U),

for example. We note that these are not always sheaves, but are in good situations e.g.
topologically of finite type.

Now for some standard facts:

Theorem 2.6. For a rational open, we have U ≃ Spa(OX(U),O+
X(U)). The stalks

OX,x are local rings, and furthermore for any open U we have

O+
X(U) = {f ∈ OX(U) : |f(x)| ≤ 1, x ∈ U}.

This first fact is not surprising given the universal property. Note that it shows why R+

is needed: if we want rational opens to be affinoids, we can’t just use R◦.

We have now equipped equipped X with a locally ringed space structure! To account for
the sheaf O+

X , we make a modification.

Definition 2.7. The categoryV consists of locally ringed topological spaces (X,OX)
where X is a sheaf of complete topological K-algebras along with a continuous val-
uation

f 7→ |f(x)|
on OX,x for every x ∈ X.

A morphism is a morphism of locally topologically ringed spaces which are contin-
uous K-algebra morphisms on OX and compatible with the valuations.

The data of O+
X is given by the valuations: we always have

O+
X(U) = {f ∈ OX(U) : |f(x)| ≤ 1, x ∈ U}.

Thus, (R,R+) sometimes naturally gives an object inV , which we call affinoid adic spaces.
The tricky thing is that OX need not be a sheaf; call such a pair sheafy.
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Definition 2.8. An adic space is an object of V locally isomorphic to an sheafy
affinoid Spa(R,R+).

Remark 2.9. If R is topologically finite type, then (R,R+) is sheafy. This is not
surprising, since these correspond to rigid analytic spaces (there is a fully faithful
functor from rigid analytic spaces with topologically finite type adic spaces as the
essential image).

Being stably uniform also shows a pair is sheafy: this means all rational opens are uni-
form affinoids, orS◦ is bounded for a rational subdomainSpa(S, S+) ⊂ Spa(R,R+).

After this formalism, it’s important go through some examples. One of the standard ex-
amples is the adic unit disk, which illustrates why we chose to allow valuations of rank
> 1.

Example 2.10 (The disk). Consider the adic space Spa(Cp⟨T⟩,OCp⟨T⟩).

Let me point out some obvious points of this space. For any x ∈ Cp with |x| ≤ 1,
we obtain a valuation

f 7→ |f(x)|Cp ∈ R>0

by literally evaluating f ∈ Cp⟨T⟩ at x. This corresponds to a maximal ideal of
Cp⟨T⟩, by taking the kernel of f 7→ f(x) ∈ Cp. These classical points are why this
is called the (closed) adic unit disk.

Next, we can see the use of having valuations which are rank > 1. You might attempt
to decompose this as a topological space via

Spa(Cp⟨T⟩,OCp⟨T⟩) = {x : |T(x)| = 1} ∪ {x : ∪ε>0|T(x)| < 1− ε}
which are both open. Geometrically, this is breaking a closed disk into the open disk
and the boundary.

If we only had these classical points, as in rigid analytic geometry, the disk would
fail to be connected (this is part of why there we cannot use an honest topology).
However, points corresponding to rank > 1 valuations fix the issue. In general there
are 5 types of points, the 5th one having value group R>0 × γZ with lexicographic
ordering and γ > 1. For x ∈ Cp with |x| ≤ 1 and r ∈ (0, 1], define when f =∑

n≥0 an(T− x)n the valuation

|f(xr−)| = max
n

|an|rnγ−n ∈ R>0 × γZ.

There is also xr+ , where we take positive powers of γ.
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This indeed gives a valuation, and we will note that 01− does not lie in either open.
Putting f = T, |T(01−)| = (1, γ−1). This does not equal 1, but it is also not ≤ 1−ε
due to the rank two ordering.

Note that if you take K = Cp, the functor of points of Spa(Cp⟨T⟩,OCp⟨T⟩) spits out
R+ (which justifies the earlier slogan).

Finishing the proof of almost purity requires a stalk calculation in adic spaces. It is here
that we see why SpecR really fails as this task.

Let k(x) be the residue field of OX,x, and k(x)+ the image of O+
X,x.

Lemma 2.11. Let X be an adic space over K , and suppose π ∈ K is atopologically
nilpotent unit. Then for x ∈ X the π-adic completion of O+

X,x is the π-adic comple-
tion of k(x)+.

Proof. This is local, so assumeX = Spa(R,R+). There is a surjective map O+
X,x → k(x)+,

with kernel I. Letting f ∈ I, note that π−1f ∈ I. Indeed, V = {[x] : |f(x)| ≤ |π(x)|}
is a valid open set. But then O+

X(V) ⊇ R+[f/π] if X = Spa(R,R+), so f/π ∈ O+
X,x. It

must be in the kernel since f is, so I is π-divisible. Therefore, after π-adic completion we
get an isomorphism. □

This behavior is not present in schemes, since such open sets do not exist and so will not
be part of the stalk. Having understood this surprising point about stalks, it’s now more
believable that we can deduce almost purity from the field case by looking at stalks.

There are also examples of adic spaces which are not topologically finite type. The relevant
class of adic spaces for us will be perfectoid spaces.

Definition 2.12. Let K be a perfectoid field. A perfectoid space X is an adic space
which is locally isomorphic to an affinoid perfectoid space Spa(R,R+), which sim-
ply means R is a perfectoid ring over K .

Note that R+ is almost isomorphic to R◦: the ring R◦/R+ is almost zero, since if x ∈ R◦

then πx is topologically nilpotent and as R+ is open we see (πx)n ∈ R+, which means
πx ∈ R+ by being integrally closed.

Contained in this definition is a nontrivial theorem that the structure sheaf is a sheaf, so
that perfectoid spaces lie in V . This follows from the following important theorem, which
is where the hard part of the proof is done.
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Theorem 2.13. Let R be a perfectoid K-algebra. Then for a rational subdomain
U ⊆ X = Spa(R,R+) the K-algebra OX(U) is perfectoid.

Sketch. First, if we are working in characteristic p the claim is easier to prove but still
nontrivial.

If U = U
(

f1,...,fn
g

)
then OX(U) has as a ring of definition the completion of R+

[
fi
g

]
.

Thus, we get OX(U) after inverting π in
̂
R+

[
fi
g

]
. One may append fn+1 = πN for some

large N without changing U, so without loss of generality put fn = πN . Indeed, we know
(f1, . . . , fn) = 1 so there are hi so

∑
i hifi = 1. Then for N ≫ 0, πNhi ∈ R+ as

it is open. Then |πN(x)| = |(
∑

i π
Nhifi)(x)| ≤ maxi |πNhi(x)||fi(x)| ≤ |g(x)|. By

scaling, we may assume fi and g are in R+.

Since we work in characteristic p and everything is perfect, there are inclusions

R+

[
fi
g

]
⊆ R+

[(
fi
g

)1/p∞
]
⊆ R[1/g].

Call the first inclusion θ. One can show that coker(θ) is killed by a power of πnN , so

inverting π in R+⟨
(

fi
g

)1/p∞

⟩ gives the same Tate K-algebra. But this is clearly perfectoid
in this presentation, so OX(U) is perfectoid.

Indeed, note that it suffices to show πnN
∏

i(
f
g
)1/p

ni lies in R+[fn/g] ⊆ R+[fi/g]. But

this product just becomes
∏

i
fn
g
(f

1/pni

i g1−1/pni ), which shows the claim.

Next, leverage the claim in characteristic p to prove the claim in mixed characteristic for
rational subdomains of the form

U = U

(
f1, . . . , fn

g

)
where fi = a♯i and g = b♯ for ai, b ∈ R♭. One can show, through essentially the exact
same argument, that there is again an explicit description

OX(U) ≃ R+

〈(
fi
g

)1/p∞
〉
[1/π]

which shows it is perfectoid.

Then, since ♯ is not surjective, one must use a technical approximation lemma for elements
of R in terms of elements of R♭ to show all rational subsets can be written this way. □
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Corollary 2.14. If X is a perfectoid space, then for x ∈ X we have Ô+
X,x ≃ k̂(x)+

where k̂(x) is a perfectoid field.

Proof. We have
k̂(x)+ = ̂colimx∈U OX(U)+

over rational subsets U containing x. But then OX(U)
+ is perfectoid over K◦a, and a

completed filtered colimit of perfectoid K◦a-algebras is again perfectoid. Thus, k̂(x)+ is
perfectoid, and k̂(x) is a perfectoid field. □

The previous corollary be important in reducing the proof of almost purity to the case of a
field. Importantly, knowing OX(U) is perfectoid also allows us to deduce that perfectoid
spaces are adic spaces.

Corollary 2.15. Let R be a perfectoid ring, and set X = Spa(R,R+). Then OX is
a sheaf.

Proof. The previous theorem implies that for any affinoid U the ring OX(U)
◦ is bounded

as OX(U) is perfectoid. This implies that X is stably uniform, which implies that (R,R+)
is sheafy. □

3. Proof of almost purity

Now we’re ready to use this new geometry to help localize the proof of almost purity to
the case of fields, following Scholze’s argument.

Definition 3.1. A map f : (A,A+) → (B,B+) of affinoid K-algebras is finite
étale if A → B is, and B+ is the integral closure of f(A+) in B.

This extends to adic spaces in the obvious way by taking a cover by affinoids.

Definition 3.2. Suppose we are working with perfectoid K-algebras. Then a map
is strongly finite étale if additionally B+ is almost finite étale over A+.

Recall a map A → B of almost K◦a-algebras being finite étale means almost finitely
presented, almost flat, and unramified which means there is a diagonal idempotent
e ∈ (B ⊗A B)∗. Specifically, e2 = e, ker(µ∗) · e = 0, µ∗(e) = 1 where µ is the
multiplication map B⊗A B → B.
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This also globalizes to perfectoid spaces in the obvious way.

This definition will later be redundant after we know almost purity.

The following lemma is nontrivial, but I omit the proof since it is a reasonable statement.

Lemma 3.3. If Y is affinoid perfectoid and f : X → Y is strongly finite étale, then
X is affinoid perfectoid and also

(OY(Y),O+
Y(Y)) → (OX(X),O+

X(X))

is strongly finite étale.

The following is now basically immediate from the lemma.

Corollary 3.4. Let X = Spa(R,R+) be an affinoid perfectoid space. The follow-
ing are true:

• We have sfét(X) ≃ R+a
fét . In particular, we can tilt the category of strongly

finite étale maps.

• The functor sfét(X) → Rfét is fully faithful.

• For rational subsets U ⊆ X, the assignment

U 7→ sfét(U)

is a sheaf of categories.

Proof. For the first assertion, the previous lemma shows that we can check strongly finite
étale on global sections in the affinoid case (which a priori needs to be checked on a
cover by affinoids). In particular, strongly finite étale maps are the same as almost finite
étale covers of R+ (the condition on OY(Y) → OX(X) being étale is automatic from
O+

Y(Y) → O+
X(X) being almost finite étale). It is tiltable because after the equivalence

we can work in the almost setting, where this is already done.

For the second assertion, after we have the first claim this reduces to the full faithfulness
we already knew in almost purity.

For the final assertion, this is again precisely the previous lemma. □

The strategy is now to show that there is an equivalence of sheaves of categories

η : sfét(U) → OX(U)fét

given by inverting π. Here, we view these as sheaves on rational opens of the adic space
X.
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Knowing η is fully faithful for each individual U and that sfét(U) is a sheaf of categories
on K-rational subsets of X, we are then reduced to verifying that as a presheaf OX(U)fét

is separated and that η is an equivalence on stalks.

Here, F separated means that

F(U) →
∏
x∈U

Fx

is injective. The main content is checking an equivalence on stalks, which we will do by
reducing to almost purity for fields.

For computing stalks, we will need some nontrivial input from Gabber-Romero’s book.

Theorem 3.5 (Elkik, Gabber-Romero). Let R be a flat K◦-algebra Henselian along
(π). Then

R[1/π]fét ≃ R̂[1/π]fét

where on the right we have π-adically completed R.

Corollary 3.6. Let (Ai,A
+
i ) be a filtered system of complete uniform affinoid

K-algebras. Note that we genuinely need the generality of filtered systems for ap-
plications, and not just N-indexed. In elementary terms, C being filtered means the
system is non-empty and for every c1, c2 ∈ C there is c3 and morphisms c1, c2 → c3.
Additionally, if f, g : c1 → c2 are parallel, there is a morphism h : c2 → c3 so
hf = hg.

Set (A,A+) := (A+[1/π], ̂colimA+
i ). Then

2− colim(Ai)fét ≃ Afét.

Proof. The idea is just that we have equivalences

colimi(Ai)fét Afét

(colimi(A
+
i )[1/π])fét A+[1/π]fét

∼

∼

The downward left arrow is an isomorphism by definition.

Note that the resulting ring colimi(A
+
i ) is still Henselian along π, since filtered colimits

preserve being Henselian. Hence, the Elkik-Gabber-Romero result applies for the bottom
arrow. The final equality is by definition. □
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We will apply this corollary when computing stalks of the sheaf OX(U)fét. Now we will
use the outlined strategy to reduce to a stalk computation to prove almost purity.

Theorem 3.7 (Almost purity). The morphism η is an equivalence of sheaves of cat-
egories on rational subsets of X = Spa(R,R+).

Proof. As discussed, it suffices to check the equivalence on stalks. Precisely, for any x ∈ X
we must show

colimx∈U O+
X(U)

a
fét ≃ colimx∈U OX(U)fét

via inverting π.

Via tilting and almost purity in characteristic p,

colimx∈U O+
X(U)

a
fét ≃ colimx♭∈U♭ O+

X♭(U
♭)afét ≃ colimx♭∈U♭ OX♭(U♭)fét.

Now observe that the stalk
colimx♭∈U♭ O+

X♭(U
♭)

is Henselian along π♭, by the fact that being Henselian is preserved by filtered colimits.

Moreover, it has π♭-adic completion equal to k̂(x♭)+, by Lemma 2.11.

Then it follows by Corollary 3.6 that

colimx♭∈U♭ OX♭(U♭)fét ≃ k̂(x♭)fét.

Therefore, we see colimx∈U O+
X(U)

a
fét ≃ k̂(x♭)fét.

Similarly, we can also do the untilted version for colimx∈UOX(U)fét, which gives k̂(x)fét ≃
k̂(x♭)fét via tilting for perfectoid fields.

Tracing through these equivalences, since almost purity in characteristic p inverts π♭ the
overall equivalence is given by inverting π. □

This completes the proof of almost purity after taking global sections.
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