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Abstract. Over the complex numbers, it is (relatively) easy to understand
the category of abelian varieties using polarizable integral Hodge structures of
type (-1,0),(0,-1). Over a finite field this becomes much more difficult but is
actually still possible!

Honda-Tate theory gives a complete description of the isogeny category of
abelian varieties over Fq. We’ll go over what exactly this description entails
and give a brief explanation about how the proof goes. At the end, I’ll talk
about a recent result of Centeleghe and Stix which gives a description of the
category of abelian varieties over Fq which heavily uses this theory.
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1. Motivation and statements of Honda-Tate theory

Let’s start by recalling what an abelian variety is before we jump into anything.

Definition 1.1. An abelian variety over a field k is a smooth connected
projective group variety over k.

As the name suggests, the group law on these is always commutative. In this talk
we’ll take k “ Fq always, unless otherwise noted. The end goal of this talk will
be to explain how recent results of Centeleghe and Stix have given a description
of the category of abelian varieties over Fq.

Over C, we can easily describe abelian varieties. Let AVC be the category of
abelian varieties over C. There is an equivalence

AVC tpolarizable Z ´ Hodge structures of type p´1, 0q, p0,´1qu
»

1
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via A ÞÑ H1pApCq,Zq. Thus, we can understand them entirely in terms of linear
algebraic data. Over a finite field, this is not really possible. There’s a result of
Deligne that takes this idea of linear algebraic data as far as you can in positive
characteristic on the full subcategory of ordinary abelian varieties over Fq. In
general, we need something more non-commutative.

What is easier in characteristic p is to describe what’s called the isogeny category.
Honda-Tate theory gives us a way to describe abelian varieties over Fq up to
isogeny. This is a powerful tool, and can be used to understand the entire category
of abelian varieties over Fq.

Definition 1.2. The category AV0
Fq

of abelian varieties up to isogeny over Fq

has objects given by abelian varieties over Fq, and morphisms HompA,BqbQ.

Over C, this is also easy to describe: we use rational Hodge structures instead.
How do we describe such a category when we work over Fq? A major tool that
helps us is the fact that it is a semisimple. The Poincaré decomposition theorem
tells us that

A „
ź

w

Aw

where Aw are simple abelian varieties. Thus, as an abelian category AV0
Fq

is
semisimple. It then suffices to understand the simple objects and their endomor-
phism algebras.

We’ll start with simple objects.

Definition 1.3. A Weil q-integer is an algebraic integer π such that under
every embedding σ : Qpπq Ñ C we have |σpπq| “ q1{2. The set of these, up
to having the same miminal polynomial, is denoted by Wpqq{ „.

Let πA denote the Frobenius endomorphism in End0
pAq. For a simple abelian

variety, this is a division ring, and QpπAq is a finite extension as πA lies in the
center. In particular, we may regard πA as an algebraic integer.

Theorem 1.4. There is a bijection

HT : A ÞÑ πA P EndpAq b Q

from the set of isogeny classes of simple abelian varieties A{Fq and the set
of Wpqq{ „ of Weil q-integers up to conjugacy.
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Understanding the isogeny category has almost been accomplished by the theorem
above. The last component is the following result determining the endomorphism
algebras.

Theorem 1.5. Let A be a simple abelian variety over Fq. The endomor-
phism algebra of A in AV0

Fq
is given by a division algebra D whose center is

QpπAq.

We can specify this precisely using class field theory, namely using the exact
sequence

0 BrpKq
À

v BrpKvq Q{Z 0,Σ

and then the Brauer class specified by the local invariants will contain exactly
one division algebra.

To specify the division algebra D over QpπAq it then suffices to describe the
local invariants invvpDq. These are 0 for v | p8, or is complex, and 1

2
for v

real. For finite places, we have

invvpDq “
vpπAqrQpπAqv : Qps

vpqq

when v | p. It splits at all places not dividing p.

With this, we have entirely determined the category AV0
Fq
. This has some nice

applications already.

Example 1.6. We can completely classify the isogeny classes of elliptic
curves over Fq. Here, πE is completely determined by the trace of Frobenius.
For example, over Fp every trace of Frobenius within the Weil bounds is
realized; there is a corresponding isogeny class of elliptic curve. We get one
supersingular isogeny class, and 2t2

?
pu ordinary ones. For q this is slightly

more complicated, but can again be made explicit.

2. A little bit about the proof

The first major component of the proof comes from Tate’s theorem. Set TℓpAq :“
lim
ÐÝ

Arℓns, where ℓ ‰ p is prime.

The ℓ-adic Tate module contains the same information as étale cohomology, in
the sense that

H1
étpAFq

,Zℓq “ Hompπ1pAq,Zℓq.
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Then, π1pAq b Zℓ » TℓpAq (torsion in abelian varieties classifies finite covering
spaces). So, as representations they are dual; no information has been lost.
Indeed, for an abelian variety we have as graded Zℓ-algebras with a Galois action
that

H‚
étpAFq

,Zℓq “

‚
ľ

rTℓpAq
_

s.

This tells us that studying the Galois action on TℓpAq tells us the entire Galois
action.

Over any field, we have an injection

HompA,Bq b Zℓ Ñ HomZℓ
pTℓpAq,TℓpBqq

of Zℓ-modules. For example, over C there is an obvious injection

HompA,Bq Ñ Hompπ1pApCqq, π1pBpCqqq.

This is because the actual homomorphisms are morphisms of integral Hodge
structures, where the Hodge structure comes from H1pApCq,Zq. But this amounts
to a regular homomorphism between these with extra conditions. This is one
example of a refinement of this injection to be an isomorphism: we take homo-
morphisms of Hodge structures. These can be seen as morphisms representations
of the Deligne torus ResCRGm.

Over Fq, there is a good refinement of this map that makes it an isomorphism.

Theorem 2.1 (Tate). Let A,B be abelian varieties over Fq. There is an
isomorphism

HompA,Bq b Zℓ » HomGFq
pTℓpAq,TℓpBqq.

On a projective algebraic variety over Fq, Deligne showed that the eigenvalues
of Frobenius acting on Hi

étpXFq
,Qℓq have absolute value qi{2. In general it’s very

difficult to go the other way and produce a variety with prescribed Frobenius
eigenvalues. These tell us a lot of information: if we can understand the char-
acteristic polynomial of Frobenius on these étale cohomology groups, we recover
the Zeta function.

When A “ B is a simple abelian variety, this tells us that the Weil q-integer
πA coming from πA P EndpAq b Qℓ can be recovered from the Frobenius on
TℓpAq b Qℓ. In particular, the Frobenius eigenvalues on H1

étpA,Qℓ
q should have

absolute value q1{2, so we see now how Honda-Tate theory relates to the Weil
conjectures. One can see this more directly through the Rosati involution.
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Note that proving these in the case of abelian varieties is very easy: we can do
everything in terms of the ℓ-adic Tate module, and the Grothendieck-Lefschetz
trace formula has an easy subcase here as well.

A thing that’s important to emphasize here is that the full statement of Honda-
Tate theory gives us a converse to the Weil conjectures on abelian varieties. In
particular, it allows us to construct a simple abelian variety from πA P Wpqq{ „.
But the Frobenius endomorphism πA’s corresponding action, lying in EndGFq

pTℓpAqb

Qℓq » End0
Fq

pAq b Qℓ, is the dual to the action on the first étale cohomology; as
we saw, the full étale cohomology ring is an exterior on this. Thus, specifying πA

allows us to specify the eigenvalues of Frobenius on H‚
étpA,Qℓq, and to also say

which ones actually occur.

Apart from allowing us to connect back to the Weil conjectures, this also allows
us to precisely write down when two abelian varieties over Fq are isogenous.

Corollary 2.2. Two abelian varieties A,B over Fq are isogenous if and
only the characteristic polynomials χA, χB of Frobenius on the ℓ-adic Tate
modules are equal. More generally, A is Fq-isogenous to an abelian subvariety
of B if and only if χA|χB.

Moreover, for a simple abelian variety over Fq the polynomial χA is a power
of an irreducible polynomial.

In particular, we get injectivity of the Honda-Tate map: Fq-simple abelian va-
rieties have characteristic polynomials which are powers of an irreducible poly-
nomial. If we have πA “ πB, then they are powers of the same irreducible
polynomial; it follows if the characteristic polynomials are not equal, then one
divides the other. But this gives a contradiction using the above corollary, as the
abelian varieties are simple. So they must in fact be isogenous.

Surjectivity is a bit harder. One way of doing this is to construct abelian varieties
over extensions of Qp, and show they have good reductions giving us enough Weil
q-integers to conclude the result.

3. Moving past the rational story

Honda-Tate theory gives us a description of AV0
Fq
, but actually today (as of 2021)

we can describe the entire category AVFq .

A first approximation of this result was given by Deligne in 1969 for ordinary
abelian varieties, shortly after Honda-Tate theory was established.

Define Lq to be the category of pairs pT,Frq where:



6 DYLAN PENTLAND

‚ T is a finitely generated free Z-module, and Fr P EndpTq.

‚ The endomorphism Fr b Q is semisimple, with eigenvalues of absolute
value

?
q.

‚ At least half of the roots of the characteristic polynomial of Fr in Qp are
p-adic units.

‚ There is a Vischiebung V such that Fr ˝ V “ q.

Morphisms are morphisms of free Z-modules respecting Fr: φ ˝ Fr “ Fr1
˝ φ.

Theorem 3.1. Let AVord
Fq

be the category of ordinary abelian varieties over

Fq. Fix an embedding ε : WpFqq Ñ C. Let A# be the Serre-Tate canonical
lifting of A to WpFqq. Put

TpAq :“ H1pA
#

bε Cq.

Additionally, set FrpAq to be the endomorphism of TpAq induced by the
corresponding lift of Frobenius. Then the map

A ÞÑ pTpAq,FrpAqq

is an equivalence of categories AVord
Fq

» Lq.

This requires several bad choices which we would like to avoid. This theorem
attempts to capture the spirit of what happens over C, namely that the po-
larizable integral Hodge structure H1pA,Zq gives an equivalence of categories
between abelian varieties over C and polarizable integral Hodge structures of
type (-1,0),(0,-1). The idea is that for ordinary abelian varieties, we can use the
same strategy with TpAq except add the data of Frobenius.

However, in general such an association is bound to fail on the entire category
AVFq . For example, with supersingular elliptic curves the endomorphism alge-
bra does not admit 2-dimensional Q-representations, so any attempt to capture
morphisms is bound to fail. Indeed, such elliptic curves are precisely when the
ordinary condition fails.

The result of Centeleghe and Stix allows us to recover this result and get far more
generality. Unfortunately, the functor is still not without choices.

There is always some Fq-isogeny

A Ñ
ź

πPWpqq{„

Anπ
π

by semisimplicity of the isogeny category where Aπ are simple abelian varieties.
Call the set of π that appear in the decomposition the Weil support. For any
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subset w Ď Wpqq{ „, denote by AVw the full subcategory of AVFq whose objects
are abelian varieties with Weil support contained in w.

Theorem 3.2 (Centeleghe-Stix). There is an ind-representable anti-equivalence
of categories

T : AVw Ñ ModZ´tfpSwq

for a certain non-commutative pro-ring Sw. Here, this denotes left modules.
They are required to be free of finite rank over Z.

The pro-ring Sw is the endomorphism ring of the representing pro-object. This
is where the choice comes in. Taking w to be the set of all Weil numbers, we can
describe the entire category AVFq . Or, taking ordinary Weil numbers, we recover
Deligne’s result.
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