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Groups and Trees

1 Introduction
The star of this class will be on an extremely special tree, called the Bruhat-Tits tree. It
looks like this:

Figure 1: An example of a Bruhat-Tits tree.

Roughly, the class will be divided into three pieces. The first will focus on what is called
Bass-Serre theory. Roughly, this aims to fully understand the structure of groups with
nice actions on trees by carefully using a few tools from topology and some combina-
torial arguments.

We will then see some amazing applications of these ideas to certain p-adic groups like
SL2(Qp) which act on trees: in particular, Bruhat-Tits trees.

Finally, we will see how the Bruhat-Tits tree connects even more deeply to the nature
of the p-adic group by encoding some deep facts about its representation theory. We
will apply this to construct Ramanujan graphs, which are extremely special graphs in
combinatorics and computer science that have applications to error correcting codes.
Roughly, these are d-regular graphs whose edges behave as if they are random and
evenly distributed.
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Groups and Trees

2 Bass-Serre theory
As mentioned in the introduction, Bass-Serre theory is about studying nice actions of
a groupG on a treeX and extracting whatever information we can from this aboutG.
We will prove something like the following by the end of this section:

Theorem 2.1 (Very rough statement). Let G be a group which acts nicely on a
tree X. There is a corresponding “homotopy quotient” space |X|//G such that

π1(|X|//G, v) ≃ G.

Here, |X| denotes the topological space underlying a graph. We can compute
this fundamental group from combinatorial data in a so-called “graph of groups”
[X/G] describing the structure of this space. This recovers a presentation of G
from a complete description of the action.

In the first subsection, we will sketch the very easiest case where the action on the tree
is free. This means that no vertices are fixed by g ̸= 1, and no edges are inverted. In
this case, our groupG will be identified with the fundamental group of a graph, which
is in fact a free group. We’ll then try to motivate the idea that we can extend to more
general actions.

We’ll then actually prove in detail the simplest case of Bass-Serre theory, when we have
a free action.

Next, we construct the space |X|//G and explain how it behaves like a “graph of
spaces”, and upon taking fundamental groups of these spaces we get (inexplicitly) the
combinatorial data of the graph of groups [X/G].

After this, we will need some group-theoretic preliminaries about amalgams and HNN
extensions. We will use these later to explicitly write down π1(|X|//G, v).

Finally, we write down explicitly the graph of groups and use amalgams and HNN
extensions to compute π1(|X|//G, v), thereby giving a (potentially new) presentation
of G from the action.

At the end we’ll show that the existence of fixed points in the action ofG onX implies
a certain level of complexity: namely, the groupG is not an amalgam. We’ll go through
the example of SL3(Z).
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2.1 Motivation and outline
We canmotivate Bass-Serre theory by just thinking about a very simple example where
we can prove that a group is free. We can arrive at this idea by just thinking about how
free groups arise topologically.

Definition 2.2. A wedge of two spaces X and Y is a space X ∨ Y is defined as

X
∐

Y/ ∼

where∼ identifies chosen basepoints x0 ∈ X and y0 ∈ Y (imagine this as gluing
these two points together).

For example, a wedge of two circles looks like the following:

If we were to calculate π1(S1 ∨S1), we’d see there are two generators for the blue and
red loops. These have no relations.

Lemma 2.3. Let X be a wedge of n circles. Then π1(X) is a free group on n gen-
erators.

Proof. Use Van Kampen!

Observe that X has a universal cover, which is an infinite 2n-regular tree (due to also
including inverses of the generators to draw the graph). The group π1(X) acts freely
on this tree, via deck transformations.

By an action on a graph, we mean a homomorphism G → Aut(X), the group of
graph automorphisms. These are invertible graph homomorphisms, or functions between
vertex sets of graphs that map adjacent vertices to adjacent vertices. By a free action
we mean no vertices are fixed by a nontrivial element, and no edges are inverted (there
is some orientation preserved byG). We assume all group actions on trees are without
inversions unless otherwise stated.
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In the case of Z ∗ Z = F{a,b}, we’ll explain an alternate construction coming quite
directly from the group (which works for any free group). Take the vertex set to be
Z ∗ Z/⟨a⟩

∐
Z ∗ Z/⟨b⟩. This is just all the words, broken up into those starting with

b and a. The edge set is Z ∗ Z, with a particular edge connecting the element modulo
a to the element modulo b. The graph looks like this:

We’ll see that we can use this construction of a tree in slightly more general situations.
In particular, we can get a graph an amalgamated productG1 ∗H G2 acts on by taking
a quotient by H in the edge set.

So, we can realize free groups as fundamental groups. We wanted a technique to prove
that a particular group is free, so what we would like to do is deduce this from some
action on a tree that will play the role of the universal cover. This is indeed possible,
and is the simplest case of Bass-Serre theory.

Proposition 2.4. Suppose a group G acts freely on a tree X. Then G is a free
group.

Sketch. Write |X| for the topological realization of a graph (essentially, the picture of
a graph as a space). The general idea is that |X| → |X/G| is a covering map, which
is deduced by the freeness of the action. Here, we define a quotient graph by taking
vertex and edge sets modulo the equivalence relations v ∼ gv and e ∼ ge respectively.

Then, we can actually identify X as the universal cover. It turns out that this lets
us identify G ≃ π1(|X/G|), and π1 of a graph is always free since it is homotopy
equivalent to a wedge of circles.
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Remark 2.5. We assume the action does not have inversions: otherwise, the swap-
ping action on ∗ → ∗ by Z/2Z would count as free since the nontrivial element
fixes no vertices. We don’t want to consider Z/2Z a free group.

To summarize, in the situation of a free action on a tree we have a covering map

X→ X/G

and the fundamental group of the graphX/G isG, and can also be computed as a free
group. So, we can recover a description of G acting freely on a tree via its action.

What about groups which are not free? Ideally, we’d like to be able to combinatorially
reconstructG with action on a treeX without inversions by finding a space which has
a fundamental group computable via the action. A key thing to notice is that π1 is a
homotopy invariant, so we might consider modifying the topological space |X| up to
homotopy equivalence.

Idea: Construct a contractible space X′ homotopy equivalent to |X| with a free
G-action such that

X′ → X′/G

is a covering map, so π1(X′/G) ≃ G.

The proposal here is that we should produce some notion of a homotopy quotient, where
we replace objects up to homotopy to make the action nicer. After understanding how
this construction works, it will become clear that π1(X′/G) can be computed from
the “graph of groups” [X/G], which is roughly the naive quotient graph but where we
remember the data of stabilizers of vertices and edges that the naive quotient forgets.

Another perspective youmight have on this is starting from the graph of groups [X/G],
and thinking of that as the appropriate quotient graph since it now remembers stabi-
lizers (which is precisely what we lose in the naive quotient). Then, you could try and
find a “homotopy type” of this space, which turns out to be X′/G. 1

1We won’t be discussing it here, but the idea is that [X/G] is a Deligne-Mumford topological stack.
These have a homotopy type, which comes out to be the homotopy quotient.
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2.2 Trees and free groups.
In this section, we see a detailed proof based on the previous outline thatG acts freely
(that is, nontrivial g fix no vertices and it acts without inversions) on a tree X if and
only if G is a free group.

First, we make precise the notion of a topological realization of a graph. Serre defines a
graph in a slightly nonstandard way; we’re going to adapt the theory to work with the
standard treatment of a graph. In this definition, we define a graph to be a pair (V,E)
consisting of vertices and edges. The edges are equipped with boundary vertices ∂0e
and ∂1e. Implicitly, all graphs will be connected graphs here, and labeling the bounding
vertices gives an implicit orientation. A tree is defined as a connected graph without
any cycles (people often call a general graph without cycles a forest, since it consists of
a union of trees).

To make the topological realization of a graph, we simply take each edge and replace it
with [0, 1]. Then, we glue these intervals to vertices the edge connects to. This creates
a topological space, which looks like the usual picture you draw of a graph. We denote
this by |Γ| for a graph Γ.

The homotopy type of a graph is actually quite simple.

Lemma 2.6. Let Γ be a connected graph. The topological realization |Γ| is homo-
topy equivalent to a wedge of circles.

Proof. Let T ≤ Γ be a maximal subtree. We first claim that the map

π : |Γ| → |Γ/T|

obtain by contactingT is a homotopy equivalence. This isn’t too hard to see intuitively,
since we can imagine picking a base for the tree and contracting the edges one by one.

However, if we are being rigorous there’s a problem. We’re essentially assuming that
collapsing a contractible subspace to a point does not change the homotopy type. This
is false in general. For example, take X = S1 and A = S1 \ {p}. Collapsing A by
passing to the quotient actually gives a contractible space (seeing this takes a bit of
work, however)

In our case, everything is fine. The closed subspace |T| ⊆ |Γ| is what’s called a cofi-
bration. This means that if we have an extension f ′ : |Γ| → S of f : |T| → S, any
homotopy

H : |T| × [0, 1]→ S
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with H(t, 0) = f(t) can be lifted to H′ : |Γ| × [0, 1]→ S where H′(g, 0) = f ′(g).

In particular, take the homotopy H from 1|T| where Ht contracts the tree to a point.
Extending to the global identity 1|Γ|, we have a map H′

1 : |Γ| → |Γ|. This factors
though the quotient map |Γ| → |Γ/T|, since on the tree H′

t was contracting it.

Further, there is an induced homotopy H′
t : |Γ/T| → |Γ/T| on the quotient as it

sends the tree T to itself.

We then have a commutative diagram

|Γ| |Γ|

|Γ/T| |Γ/T|

H′
1

p p

H′
1

f

where f results fromH′
1 factoring through the quotient. Commutativity of the bottom

triangle follows from p being surjective. Via Ht, we deduce f ◦ p is homotopic to the
identity. We can show p ◦ f is as well, using H′

t. The initial claim follows that we can
safely contract T without changing the homotopy type.

After this, the proof is simple: the graph Γ/T has a single vertex. Thus, we only have
self-loops.

With this in hand, the proof strategy before makes more sense. If we just prove that we
actually get a covering map |X| → |X|/G for a groupG acting freely on a treeX, then
the quotient is again a graph and we identifyG with the fundamental group which we
know is free. Let’s do this rigorously now.

Proposition 2.7. Suppose a group G acts freely on a tree X. Then G is a free
group.

Proof. The map |X| → |X|/G satisfies a slightly stronger than non-identity elements
of G not fixing vertices. Namely, every x ∈ |X| (as a topological space) has a neigh-
borhood U such that gU and U are disjoint except when g is the identity. This is
called being an even action. The condition is obviously true for vertices. On edges, it
is true because of the condition on inversions (if we had an inversion, think about the
midpoint of the edge).

The quotientX/G is a graph again, and since |X| is simply connected it is the universal
cover of this graph via the covering map |X| → |X|/G. It follows from covering space
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theory that
G ≃ π1(|X|/G).

The required lemma is the following:

Lemma 2.8. Let p : X → X/G be a quotient map where X is equipped with an
even action. Then the quotient map is a covering map, and moreover π1(X/G) ≃
G if X is simply connected.

Being even makes this a covering map, and X being simply connected makes X the
universal cover. This holds because π1(X/G) is the group of deck transformations of
the universal cover (self-maps as a covering space). To see this is the case, we use the
lifting theorem. Given a loop [γ] ∈ π1(X/G), lift this to X using the lifting theorem.
We get a path γ̃, and so use the lifting lemma on

(X, x̃)

(X, γ̃(1)) (X/G, x)

p

p

where x̃ is the basepoint of the universal cover of (X/G, x). This tells us there is a
unique lift, which provides a deck transformation associated to the class [γ]. Deck
transformations are the same if they agree at a single point, by uniqueness in the lifting
lemma so this construction only depends on the homotopy class of γ. Thus, we get a
map of sets π1(X/G, x)→ Deck(X,X/G). This is seen to be a group homomorphism
by looking at the endpoint of γ̃ · γ′(1), and noting that we get the same endpoint
by following both lifted paths one after another. It is an isomorphism as well: it is
injective, since if [γ] and [γ′] in π1(X/G, x) have lifts with the same endpoint, they
are homotopic since X is simply connected. Moreover, it is surjective since a deck
transformation f is determined by where it sends x̃ in the fiber (uniqueness in the
lifting lemma), and we can just draw a path from x̃ to f(x̃) and apply p to produce the
corresponding loop [γ].

Every g ∈ G induces a deck transformation by acting on X. Letting f be a deck
transformation, we see x and f(x) are in the same orbit by definition. Then there
exists some g ∈ G sending x 7→ g · x = f(x). A deck transformation is determined
by where it sends a single point, since we have a unique lift of p : X → X/G for a
given choice of basepoint (a lift of a given point). By the lifting theorem, there is a
unique such lift!
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Now apply the lemma to our |X| which is simply connected as it contractible.

SinceX/G is a graph, its topological realization is homotopy equivalent to a wedge of
circles by contracting a maximal spanning tree. By Van Kampen’s theorem, π1(G\X)
is a free group.

This has some useful consequences. For example, we get the following corollary now.

Corollary 2.9 (Nielsen-Schreier). Any subgroup of a free group is free.

Proof. Being a free group on some set S of generators, it acts freely on the universal
cover of a wedge of circles (one for each s ∈ S). This universal cover is a tree. Any
subgroup still acts freely, so by the previous result it is again a free group.

Corollary 2.10 (Schreier index formula). LetG be a free group on a finite num-
ber of generators rG, and H ≤ G a subgroup of finite index n. Then if H has rH
generators,

n(rG − 1) = rH − 1.

Proof. The group G acts on a graph X, forming a quotient graph X/G. The quotient
graph X/H is an n-fold cover of X/G.

We can read off the rank/number of generators of π1(|Γ|) for a connected graph Γ
quite easily: it is 1 − χ(Γ), where χ is the Euler characteristic as a topological space.
Here, we can define χ as#V −#E (there is a general definition in topology as well,
so it is homotopy invariant). Thinking about a maximal spanning tree, the overall
contribution to this number is 1. Then each additional edge forms a loop, so 1 −
rπ1(|Γ|) = χ(Γ).

Now the proof, and appearance of rG − 1, becomes clear. In an n-fold covering map
of topological spaces, it is a fact that the Euler characteristic gets multiplied by n. The
reason is just that we can count lifts of edges and vertices. In particular,

χ(|X/H|) = nχ(|X/G|).

From rG − 1 = −χ(|X/G|) and similarly for H, the claim follows.

Both of these statements about free groups are really not obvious without the topolog-
ical viewpoint. Particularly with the Schreier index formula, a non-geometric proof
might obscure the “moral” reason why it is true, coming from χ.
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One thing thatmight seem confusing at first with the Schreier index formula is that the
roles ofG andH seem reversed. You might initially expect that a subgroup should have
less generators, as is the case with the obvious infinite index subgroups of a free group.
With covering space theory, we can write down some explicit examples by producing
finite covers of wedges of circles.

Let’s return to our previous example of S1∨S1. In this case, we know the fundamental
group is F{a,b}. Consider the following covering space from Hatcher’s book:

Figure 2: 2-fold cover of S1 ∨ S1 from Hatcher’s Algebraic Topology.

The covering map sends each vertex to the point of intersection point ∗ of the circles,
and the edges labeled a and b are sent to the two generators of π1(S1 ∨ S1, ∗). This is
evidently a twofold cover: there are two copies of ∗. and two copies of each of a and b.
We see that the Euler characteristic of the graph is 2χ(S1 ∨ S1) as a result. It follows
the number of generators of the fundamental group of this graph is

1− 2χ(S1 ∨ S1) = 3.

This is indeed the case, and generators are given by a, b2, and bab−1. We see now why
the rank is nearly always higher: we can produce lots of words in a free group which
have no relations!
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2.3 Graphs of groups
Having seen the case where G acts freely on a tree X in detail, we will now begin to
tackle the general case where G only acts without inversions.

Recall that for a general action without inversions, we were unsatisfied that π1(X/G)
does not recover G. For example, take the extreme case of G acting trivially on ∗. The
naive quotient still has trivial fundamental group.

However, if we are able to replaceXwith a homotopy equivalent (again contractible/ho-
motopy equivalent to a point) space X′, the hope is that now we can haveG act freely
again. Then we get a legitimate covering map

X′ → X′/G

and covering space theory, like in the case of a free action, allows us to deduceπ1(X′/G) ≃
G.

We call X′/G the homotopy quotient, and denote it |X|//G. We will first go about
constructing it, and then connecting to the graph of groups [X/G] alluded to earlier.

First, we ought to be able to construct the simplest case of a homotopy quotient
∗//G. Such a space should have a contractible universal cover, and we want to have
π1(∗//G) = G. This actually already determines the homotopy type.

Theorem 2.11. Up to homotopy equivalence, there is a unique space BG with a
contractible universal cover.

Proof. See Theorem 1B.8 in Hatcher’s Algebraic Topology.

Up to homotopy equivalence, there is then also a unique space |X|//Gwith the desired
properties since |X| is contractible. However, we want a better description than BG.
The idea will be to build this out of ∗//Gv and ∗//Ge for stabilizer groups of vertices
and edges.

All we need to do now in the case of ∗//G is provide a good construction of the space.
As a first attempt, maybe we try to manually make a space X with π1(X) = G and
then consider the universal cover.

Lemma 2.12. We can make a nice space with fundamental group G.

12
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Proof. We know that we can write G = ⟨S : R⟩. Making the generators is easy: take
a wedge of |S| circles (this doesn’t actually require S to be finite, we just let the set
circles be in bijection with S). Denote the wedge of circles by X1.

We observe that we can create arbitrary relations by taking a diskD2 ⊆ R2 and gluing
its boundary (a loop S1) onto the graph in a particular way. Let’s see an example.

Say we want to make X so π1(X) = Z2. We expect to get a torus out of this. First,
take two circles and wedge them together, and label the generators of the fundamental
group a and b. Then, consider the nontrivial loop γ = aba−1b−1. If we trivialize just
this, then we’ve made the generators commute. Being a loop, we can identify it with
S1 via a map f : S1 → γ. We glue a disk via this map, i.e. we attach θ ∈ S1 to
f(θ) ∈ S1 ∨ S1.

This loop now becomes trivial: we can just slide it over the disk to make it trivial. To
see this geometrically, imagine you have a nontrivial loop on ∂D = S1 and slide it
though the disk to a point.

Now we will make this argument precise. For each relation word in R, we take the
loop for this word and attach D2 along this loop as in the example. Suppose we have
attached some number of disks to makeX, and are now attaching another diskD2 for
a relation r to make X′. Cover X′ with a small open neighborhood of X and a small
open neighborhood of the disk D2. By Van Kampen, we have

π1(X
′) = π1(D) ∗π1(S1) π1(X).

The map π1(S1) = Z → π1(X) sends 1 7→ r. Thus, we take 1 ∗Z π1(X), and by our
construction of the amalgamated product this just adds a relation r.

Unfortunately, in this construction the universal cover need not be contractible. It is
also not a very ‘canonical’ construction, since we had to choose a presentation. Let’s
give this a second shot, trying to put more emphasis on the free action on the universal
cover.

Theorem 2.13. There is a contractible spaceEG endowed with aG-action which
is free, such that

EG→ BG := EG/G

is a covering map. Then we can identify the homotopy quotient ∗//G with BG.

Proof. We build up EG by gluing together n-dimensional cells. We begin with a space
(EG)0 by taking G as a discrete set: this has an obvious free action by G via multi-
plication, but is far from contractible. To remedy this, glue copies of D1 = [0, 1] for
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each pair [g1, g2] onto g1 and g2 to form (EG)1. This is just G×G, so we can extend
the G-action. Each [g] now has a path to [e], so we can move these along the paths to
attempt to contract the first component (EG)0. However, we now have a problem: we
added new segments [g1, g2], and we don’t have a way to contract these.

The solution is to do the same thing again, so we can now contract (EG)1. We continue
with this for each n ∈ N, attaching n cells [g1, . . . , gn+1], and gluing onto n− 1-cells
by forgetting a group element.

Thus, we obtain a space EG with a free G-action: multiply on the left. We can think
of this as taking the most obvious free G-action, multiplication of G on itself, and
then iteratively correcting it to be contractible. The reason EG is contractible at the
end is that we can slide each x ∈ [g1, . . . , gn+1] along the segment in [e, g1, . . . , gn+1]
to the identity element [e] (which now always exists, since we repeated the process
indefinitely).

One can check that EG → EG/G is a covering map (we need slightly more than
freeness), and hence it makes sense to define BG := EG/G.

Exercise. Check that a homomorphismG→ H induces a continuous mapBG→ BH.
Moreover, if it is an isomorphism then BG and BH are homeomorphic.

Remark 2.14. We can construct BG directly as the geometric realization of the
nerve of the 1-object category G, with morphisms for each group element com-
posing as g ◦ g′ = gg′. This makes it a better choice as opposed to some other
homotopy equivalent space.

This space is known as a classifying space because the space of homotopy classes of
maps [X,BG] classifies principalG-bundles on X. For example, whenG = GLn

this classifies vector bundles. We can compute the isomorphism classes using the
orthogonal group O(n) instead, and then computing invariants of BO(n) such
as cohomology allows us to understand vector bundles.

We will now want to choose a specific space |X|//G, rather than being satisfied with
it being BG up to homotopy equivalence.

Corollary 2.15. Let G act on a tree X without inversions. Then EG× |X| is a
contractible space with a free G action, and

EG× |X| → |X|//G := (EG× |X|)/G

14
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is a covering map. It follows π1(X//G) = G as well.

Proof. Since X is a tree, |X| is contractible. Further, since the action of EG is free
and |X| is a space withG-action induced by the tree action (graph automorphisms are
topological automorphisms), the action on EG × |X| remains free. We can easily see
the quotient by this action then yields a covering map (by checking the action is even),
and due to freeness by the same argument as in the free action on a tree case we deduce
π1(|X|//G) = G.

Remark 2.16. For a general space X with an action byG, realize the quotient of
X by G as a category by taking the objects to be x ∈ X, and morphisms (g, x) :
x→ g ·x. This is a groupoid: all morphisms are invertible. It is usually called the
action groupoid. The geometric realization of the nerve of this category is X//G.
Applying to a tree, we get the space in the corollary so it is again the “best” choice.

The reason we chose this particular space is to fill in a key component of Bass-Serre
theory: we need to be able to give a recipe to compute π1(|X|//G) from data about the
action on X, otherwise we have gained no information about G. For example, with a
free action we just contracted a maximal spanning tree on the resulting quotient graph
and counted loops.

The idea is to read off π1(|X|//G) from a graph of groups, after better understanding
what it looks like. Recall we informally defined a graph of groups as the naive quotient
graphX/G, with edges and vertices adorned with their stabilizersGv andGe. We now
make this notion precise.

Definition 2.17. A graph of groups is a connected graph X along with a group
Gv for each vertex v and a group Ge for each edge e.

For each edge e, we have boundary vertices ∂0e and ∂1e. In a graph of groups, we
also ask for the data of injective homomorphisms

ψe,i : Ge → G∂ie

for i = 0 or 1.

The reason for the homomorphisms is that in a quotient graph, the stabilizer of any
v, e ∈ X/G is well-defined only up to conjugacy because we could take another orbit
representative (though then the isomorphism class stays the same). Thus, we need to
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explain how they are related. We can get injective homomorphisms because for a par-
ticular lift in X,Ge ≤ Gv . Thus, the graph of groups should not just be X/G with the
isomorphism classes of stabilizers labeled.

How does |X|//G connect to the graph of groups? To understand this, we just need
to understand that it looks like a “graph of spaces” already. Indeed, given any graph of
groups, we can make a graph of classifying spaces by taking the induced maps

BGe → BGv

from the injective homomorphismsGe → Gv . Using these, we takeGe× [0, 1] and use
these induced maps to attach these cylinders. One can even define the fundamental
group of a general graph of groups to be the fundamental group of this space.

Definition 2.18. A graph of spaces is a graph X along with a space Xv for each
vertex and a space Xe for each edge e.

For each edge e, we have boundary vertices ∂0e and ∂1e. In a graph of spaces, we
also ask for maps

ψe,i : Xe → X∂ie

for i = 0 or 1 inducing injective homomorphisms on fundamental groups.

The previous construction turns a graph of groups into a graph of spaces. By taking
fundamental groups and looking at the induced homomorphisms, we can also turn a
graph of spaces into a graph of groups.

The following lemmas tell us that |X|//G is a graph of spaces, and hence has an un-
derlying graph of groups [X/G].

Lemma 2.19. For our construction of |X|//G, there is a natural projection map

|X|//G→ |X/G|.

The fiber above a vertex v ∈ |X|/G is homotopy equivalent to BGv, and for an
edge e it is homotopy equivalent to BGe. Here, Gv and Ge are the stabilizers
under the action of G.

Proof. We note that in (|X| × EG)/G, projecting onto the first component gives the
desired map. The fiber over a vertex v ∈ X/G consists of all of the G-orbits (ṽ, x) ∈
|X| × EG where ṽ lifts v. We can make a particular choice of lift ṽ ∈ X, and then
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up to the G-action all of these can be written as (ṽ, x) for this particular lift ṽ. Then
we are free to further act by elements of the stabilizer Gṽ, so the fiber is naturally
EG/Gṽ ≃ BGṽ . The homotopy type of this only depends on the isomorphism class
of the group, so for the homotopy type the lift does not matter.

What we have missed here is how these classifying spaces are attached to each other.
We will delay the actual description of attaching maps until later, since this is where
the actual work is done. For now, we take this for granted so that we are satisfied that
we actually have a graph of groups [X/G] induced by taking fundamental groups in
|X|//G. The idea is roughly that if we pick a lift ṽ and ẽ consistently, it is induced
by the inclusion map on that lift. However, subtleties arise because we need to extend
this to the whole graph.

Lemma 2.20. By the previous lemma, |X|//G can be obtained by gluing together
classifying spaces. The attaching maps are obtained by maps BGe → BGv in-
duced from an injective homomorphism Ge → Gv on the fundamental groups.

Now, the main idea is the following.

Idea: Given that |X|//G is a graph of spaces, we want to take the corresponding
graph of groups [X/G] and then computeG ≃ π1(|X|//G) from the combinato-
rial data in this. This will expressG in terms ofGv,Ge, and the homomorphisms
in the graph of groups.

17



Groups and Trees

2.4 Amalgams and HNN extensions
Having constructed an appropriate topological realization for a graph of groups, we
will need to combinatorially compute its fundamental group from the groups Gv and
Ge. What we will need to do this are two operations on groups: amalgams of groups,
and HNN extensions. Both of these constructions have topological interpretations
in terms of gluing, which is all we want to do on a graph of spaces to compute the
fundamental group.

First, recall the definition of an amalgam presented in the background notes.

Definition 2.21. For groups G1,G2 and H, equipped with homomorphisms

φ1 : H→ G1, φ2 : H→ G2

define G1 ∗H G2 to be G1 ∗ G2 (the free product: take the union of generators
and relations for both groups) with extra relations

φ1(h)φ2(h)
−1 = 1.

You should think of this as forcing agreement along the two inclusions of H. We
call this an amalgamated product G1 ∗H G2.

The relevance to Bass-Serre theory is the following:

Proposition 2.22. Suppose we have a graph of groups which looks like

•
Gv

•
G′

v
.

Ge

Then the fundamental group is the amalgam

Gv ∗Ge Gv′ ,

using the canonical injections Ge → Gv and Gv′ .

Proof. We apply Van Kampen’s theorem! Pick U and V to be open neighborhoods of
BGv and BGv′ which extend to slightly over the halfway point in BGe × [0, 1]. The
intersection is BGe × [1/2− ε, 1/2 + ε].

To better understand amalgams, we will discuss some of results presented in Serre’s
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book about them.

Suppose we are given a group A and injective homomorphisms

A→ Gi

for a collection of groups Gi where i ∈ I. Define G to be the interated amalgamated
product with respect to these (alternatively: the colimit of the diagram with these
injective homomorphisms).

Pick coset representatives Si for i ∈ I for Gi/A. A reduced word in this context is a
family

(a; s1, . . . , sn)

where a ∈ A, and sj ̸= 1 ∈ Sij . We require the sequence ij to have ij ̸= ij+1. Note
the similarity to reduced words in free groups: we take A = 1. We say this reduced
word is of type i = {i1, . . . , in} ⊆ I.

Theorem 2.23 (Structure theorem). For g ∈ G there is a unique reduced word
m = (a; s1, . . . , sn) of type i, such that

g = f(a)fi1(s1) . . . fin(sn).

Here, f is the induced map A→ G and fij is the map Gij → G.

A useful consequence of this structure result is the following.

Corollary 2.24. Every element of G of finite order is conjugate to an element
in one of the Gi. In particular, if Gi are torsion free so is G.

The other construction we want to study, HNN extensions, naturally appears for a 1
edge graph of groups as well.

Proposition 2.25. Suppose we have a graph of groups which is a self-loop, with
stabilizerGv on the vertex andGe on the edge and an injective homomorphisms
αi : Ge → Gv . Letting Gv = ⟨S : R⟩, the fundamental group is the HNN
extension

⟨S, t : R, tα1(g)t
−1 = α2(g) for g ∈ Ge⟩.

Wewill omit the proof of this. The intuition is that when we glue a subspaceY ⊆ X via
a homeomorphismY → f(Y) ⊆ X, we get an HNN extension. The extra generatorT
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comes from a path connecting the basepoint y to f(y): conjugating allows us to switch
between these basepoints. For a proof, see Proposition 1.2 in “Topological methods in
group theory” by Scott and Wall.

With these two operations, we will be able to combinatorially compute π1(|X|//G).
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2.5 Structure of groups acting on trees
In this subsection, we will put everything together and prove the following main the-
orem:

Theorem 2.26 (Main theorem). LetG be a group which acts on a treeXwithout
inversions. We obtain

G ≃ π1(|X|//G).

We compute π1(|X|//G) via amalgams and HNN extensions. Let V denote the
vertex set ofX/G, andE the edge set. We use ψe,i denote the injective homomor-
phisms in the associated graph of groups.

First, we take
GT = ∗v∈VGv/ ∼

where ∼ means we adjoin the relations ψe,0(g) = ψe,1(g) for e ∈ T and g ∈ Ge

(alternatively, quotient by the normal closure N of the subgroup generated by
ψe,0(g)ψe,1(g)

−1). Then G is obtained as

G = ⟨GT,E \ E(T) : eψe,1(g)e
−1 = ψe,2(g), e ∈ E \ E(T ), g ∈ Ge⟩.

This is meant to be combined with Proposition 2.29 which tells us explicitly how to
write down the graph of groups.

We remark here that the condition about inversions is actually a very mild condition.
Indeed, upon an initial barycentric subdivision of the tree (here this fancy term means
put a vertex in the middle of an edge) we can force this condition to be true.

To prove this, we need to revisit the description of attaching maps in |X|//G. This
will help us understand the homomorphisms in the graph of groups [X/G] explicitly,
and also allow for a proof of the previous theorem once completed.

Recall we have a map

|X|//G := (|X| × EG)/G→ X/G.

To consider what happens above a vertex v with edge e connecting to it, again take
orbit representatives in X. Say we pick ṽ and ẽ so the edge connects to the vertex.
There is an inclusion map Gẽ → Gṽ from which it’s not hard to see this induces the
attaching map, by considering the previous argument made to compute the fiber over
e and v.

However, we need to do this in a consistent way in order to actually get attaching maps
for the whole space.
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Let T be a maximal spanning tree of X/G. We have the following useful result from
Serre’s book:

Theorem 2.27. LetG be a group acting without inversions on a treeX. Then we
can lift a spanning tree of X/G to a tree in X.

Proof. Take Ω to be the set of all subtrees of X which map down injectively to our
spanning tree T in X/G. This is non-empty, since we can pick a lift of a vertex of T.
Suppose T̃0 is a maximal element of Ω (which exists by applying Zorn’s lemma), and
has image T0 ⊆ T. Then if the image is not equal to T, there is an edge e ∈ T not
belonging to T0. This can be chosen, by connectedness, to have a boundary vertex v0
in T0 and one not in T0. The edge e is the image of ẽ ∈ X, one of whose vertices is a
lift ṽ0 of v0. Both ṽ0 and the lift of v0 in T̃0 lie over v0, hence gṽ0 yields the lift in T̃0

for some g ∈ G. But then adjoining the edge g · ẽ to T̃0 extends the tree and injectively
maps into T, contradicting maximality.

Note that this process also allows us to build a tree containing a particular lift of a
vertex v ∈ T. From here on, take T to be a spanning tree of X/G. Picking vertices
and edges on the lift T̃ as the representatives, we now have a consistent way to make
attachings onT by simply using inclusions. This works because of the assumption that
the action does not have inversions, which makes them actual subgroups. For other
edges, the attaching map is induced by conjugation.

Let’s make this precise. First, becauseG acts onXwithout inversions, this is equivalent
to some orientation ofX being preserved by the action. This means that all lifts of ∂1e
can be chosen to be ∂1ẽ, and similarly for ∂0. We will implicitly be using this below.

For each edge e ∈ (X/G) \ T, there’s a unique lift ẽ ∈ X with ∂0ẽ = (̃∂0e) ∈ T̃.
Moreover, there’s a unique ge ∈ G such that

g−1
e · ∂1ẽ = (̃∂1e) ∈ T̃.

Now we can define the attaching map. This shows that Gẽ can be regarded as a sub-
group of G

(̃∂0e)
, so the attaching map ψe,0 of classifying spaces is just induced by the

inclusion of groups. On the other hand, ψe,1 is conjugation by ge (g−1
e ιge, where ι is

inclusion), since up to the action it is a subgroup of G
(̃∂1e)

.

Note that of course we are making the auxiliary choices (e.g. T and its lift). These of
don’t affect the homotopy type of |X|//G, as we are just looking at slightly different
ways of writing down the same space.
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Remark 2.28. Recall in a previous remark that |X|//G was obtained as the ge-
ometric realization of the nerve of the action groupoid. The above construction
can be viewed as taking an equivalence of groupoids, and then doing nerve and
geometric realization. Functoriality of these constructions then shows the choice
doesn’t matter.

Proposition 2.29. Let G act on a tree X without inversions. Choose a maximal
tree T of X/G, and a lift T̃ in X.

We can make a choice of attaching maps to realize |X|//G giving the following
graph of groups [X/G]:

• The group for a vertex v ∈ X/G is given by Gṽ where ṽ is the lift in T̃.

• For edges e ∈ T, the group is given by Gẽ.

• For edges e ̸∈ T, we useGẽ for the unique lift ẽ ∈ Xwith ∂0ẽ = (̃∂0e) ∈ T̃.

The injective homomorphisms are as follows:

• For edges e ∈ T, they are inclusions.

• For edges e ̸∈ T, ψe,0 is the inclusion map.

• For edges e ̸∈ T, ψe,1 is conjugation by the unique ge ∈ G such that

g−1
e · ∂1ẽ = (̃∂1e) ∈ T̃.

With a description of the attaching maps in hand, we are nearly done.

Proof of main theorem. Suppose that G acts on a tree X without inversions. We have a
map

|X| × EG→ |X|//G.

Using that |X| × EG is contractible and the G-action is even, this is a covering map
and |X| × EG is the universal cover. Just as in the case with a free action, we obtain
π1(|X|//G) ≃ G.

Above, we described |X|//G as a graph of spaces by describing the combinatorial
structure of the corresponding graph of groups in Proposition 2.29. It is here that we
crucially use that the action does not have inversions. Knowing the attaching maps,
we just need to put together what we know about amalgams and HNN extensions.
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Initially, take the maximal spanning tree and compute its fundamental group. We
know the result is ∗v∈X/GGv/ ∼, where we adjoin relations ψe,1(h) = ψe,2(h), since
after adjoining each edge we can use Van Kampen’s theorem (essentially how we dealt
with graphs of groups like ∗ → ∗) to see we just take an amalgamated product.

Next, we need to attach the remaining edges. Each of these gives an HNN extension,
since we are gluing a copy ofBGe to itself along the edge. The homomorphisms areψe1

and ψe,2: these inject into the fundamental groups associated to the adjacent vertices,
which inject into the fundamental group of the space so far.

We have now given a way to combinatorially write down G from its action on a tree,
assuming it is without inversions. This accomplishes our main task!
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2.6 Amalgams and fixed points
Recall we saw that in the particularly simple case of the graph of groups

•
Gv

•
G′

v
.

Ge

the fundamental groupwasGv∗GeGv′ . Formany interesting examples of groups acting
on trees, we actually get such a graph of groups as the result.

Let us give an example that you might see in the theory of modular forms.

Definition 2.30. We use SL2(Z) to denote the group of integer 2× 2 matrices
with determinant one.

This group has an action on the complex upper half placeH := {z ∈ C : im(z) > 0}
by linear fractional transformations. That is,(

a b
c d

)
· z := az + b

cz + d
.

Verifying manually by multiplying such fractions, you can check this is indeed a group
action.

The group SL2(Z) is generated by the matrices S and T, where

T =

(
1 1
0 1

)
, S =

(
0 1
−1 0

)
.

The fundamental domain forH/SL2(Z) is the strip [−1/2, 1/2] intersectedwith |z| ≥
1. We call this D. In particular,

H =
⋃

γ∈SL2(Z)

γD

which is almost a partition except on the boundaries.

At first glance, we might think there is no connection to Bass-Serre theory because
we see no obvious tree. However, take the segment [i, eiπ/3] bordering the fundamen-
tal domain D. The action of SL2(Z) extends this to a tree X where it acts without
inversions.

Because of how we constructed the tree, the graph of groups consists of two vertices
connected by a single segment. We just need to compute the stabilizers on the bound-
ary of the edge we began with, and the edge itself. We obtain

25



Groups and Trees

•
Z/4Z

•
Z/6Z.

Z/2Z

Thus,
SL2(Z) ≃ Z/4Z ∗Z/2Z Z/6Z.

This is a form of SL2 which is not obvious without the application of Bass-Serre theory.
Moreover, noting that±I act trivially the action descents toPSL2(Z), upon which we
get

PSL2(Z) ≃ Z/2Z ∗ Z/3Z.

Example 2.31. Here’s another neat application. Consider the commutator sub-
group of SL2(Z). From the definition of SL2(Z), it is not at all obvious this is an
index 12 subgroup which is free on two generators.

First, we note that in the tree SL2(Z) acted on, any stabilizer of a point is con-
jugate to Z/4Z or Z/6Z. Now the previous result shows that the abelianization
is Z/12Z, by looking at the amalgamated product. If a nontrivial element of the
commutator subgroup landed in one of these stabilizers, since they all inject into
the abelianization we get a contradiction.

Thus, the commutator subgroup is free. The index is 12 due to the abelianization.
Now, what is the rank of this free group? We compute the Euler characteristic of
the graph X/[SL2(Z), SL2(Z)].

Due to having index 12 and acting freely, the commutator subgroupΓ = [SL2(Z), SL2(Z)]
turns the Z/6Z endpoint of the Bass-Serre tree representing a single orbit into
12/6 = 2 Γ-orbits. Similarly, the other endpoint becomes 3 Γ-orbits. The edge
becomes 6 Γ-orbits. The Euler characteristic is then 2 + 3− 6 = −1, and so the
rank is 1− χ = 2.

However, of course not all groups can be written as a single amalgam.

Theorem 2.32. The following are equivalent for G a countable group which is
not finite:

• (FA) XG ̸= ∅ for any tree X on which G acts.

• The groupG is not an amalgam, and further has no quotient isomorphic to
Z and is finitely generated.

We call the first item “Property FA”, following Serre.
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Sketch. It’s easy to check that Property FA implies the second item: ifG is an amalgam,
write it as a fundamental group of a graph of groups and produce the tree as a sort of
Cayley graph (like we do forG1 ∗G2). If there’s a quotient isomorphic toZ, use this to
makeG act by translations on an infinite chain. Finally, if we have property FA, since
G is countable and not finite, it is an increasing union of finitely generated subgroups
G − 1 ⊂ . . . ⊂ Gi ⊂ Gi+1 ⊂ . . .. Take the set

∐
iG/Gi and make it into a tree by

connecting elements of G/Gi to their image under

G/Gi → G/Gi+1.

This is a tree with a natural G-action on each collections of cosets, hence by FA has a
fixed point under G. This lies in some G/Gn, hence G = Gn. Thus, FA implies the
groupG is not an amalgam, and further has no quotient isomorphic toZ and is finitely
generated.

What we’ve seen of Bass-Serre theory so far might make it seem like it is too good to
be true that the second item implies (FA). Well, the condition that no quotient is Z
actually already imposes a large restriction. Recall there’s a map

|X|//G→ |X/G|.

This induces a map of fundamental groups. But |X/G| is actually a graph, being the
naive quotient. The induced map on fundamental groups, being surjective, reveals that
Z∗n is naturally a quotient ofG. It followsT = X/G can’t be a very interesting graph:
it must be a tree.

The main theorem of Bass-Serre theory then greatly simplifies as the HNN extensions
go away. We get G = GT, which means it is already an iterated amalgam (recall GT

is just an iterated amalgam of Gv over v ∈ T over the groups Ge). Finite generation
means that there’s a finite subtree T′ for which G = GT′ . If this finite subtree is not
a point, then we obtain G as an amalgam by removing any endpoint and performing
the last amalgamated product. Then T′ consists of a single vertex, and must in fact be
a fixed point.

We will use the property FA to show that SL3(Z) is not an amalgam, in contrast to
SL2(Z).

A nice consequence which Serre proves is the following:

Corollary 2.33. Suppose that G is a countable group which is not finite, and
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assume it satisfies property FA. Then if

ρ : G→ GL2(C)

is a homomorphism, the eigenvalues of ρ(g) are algebraic integers.

Proof. LetK be the subfield generated by ρ(g) for g ∈ G. By the theorem, the group
is finitely generated so we get a finitely generated field extension of Q. Complete K
at some absolute value to obtain a p-adic field Kv . We’ll see later in the course that
GL2(Kv) acts on a tree X without inversions. In particular,GL2(K) also acts on this
tree. There is a homomorphism

v ◦ det : GL2(Kv)→ Z.

Let GL2(K)0 denote the kernel of this in GL2(K). There is no quotient of G iso-
morphic to Z, so it follows the image of ρ is contained in GL2(K)0 rather than just
GL2(K).

Now again GL2(K)0 acts on the tree X. There is a vertex invariant under the action
of action of G (acting via ρ(G)). We will see upon analysis of the tree’s stabilizers
(conjugate toGL2(Ov) that this means ρ(G) is contained in a conjugate ofGL2(Ov).
It follows for each g ∈ G, the coefficients of the characteristic polynomial lie inOv .

However,
⋂

vOv = Z∩K , where v runs over non-Archimedean absolute values. This
is a commutative algebra fact beyond the scope of the course. However, it implies that
the coefficients are algebraic integers, hence so are eigenvalues (solve for them from
the trace and determinant).

You’re probably used to things like this, given that for finite groups we get roots of
unity. However, for infinite groups it’s not so obvious. Note that the result lets us
deduce this for SL3(Z).

We’ll now prove that SL3(Z) has property FA, following Serre’s method. Our method
of attack will be to deduce fixed points of G from fixed points of generators si and
their products sisj . We will prove that certain types of elements in nilpotent (close to
abelian) subgroups always have fixed points, and we can find such elements generating
SL3(Z). We’ll need to do a bit more work to deduce the products sisj of these gen-
erators have fixed points, showing that in fact the entire nilpotent subgroups within
SL3(Z) we consider have fixed points. We can then find one containing any product
of generators sisj .

Let’s first cover some basic facts about geodesics in trees we’ll need for the proof. For
points p and q in a tree X, consider paths between them without backtracking which
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are called geodesics. If the path is not injective (repeats vertices), then between repeated
vertices we have a loop which contradicts being a tree. If the path is not unique, then
taking geodesics γ and γ′ there is a look γγ′. Here, we mean to follow one geodesic,
and backtrack on the second.

Thus, between vertices p and q in a treeX there is a unique geodesic. Call the length of
this geodesic ℓ(p, q). Furthermore, ifG acts on a treeX without inversions and fixes p
and q in X, then the geodesic joining them is also fixed. It follows XG is always a tree.

IfT1 andT2 are two disjoint subtrees of a treeX, there is aminimal distance d between
vertices of these trees. There is also a unique geodesic γ : p → q joining the trees of
length d, so we can speak of the geodesic γ joining two subtrees.

Lemma 2.34. Let G act on a tree without inversions, and suppose that G is gen-
erated by elements {ai} and {bj}. Let A and B be the subgroups generated by
the ai and bj respectively, and make the following assumptions:

• XA is nonempty, as well as XB.

• The elements aibj have fixed points.

Then XG is non-empty.

Proof. We assume XA ̸= ∅ and has XB ̸= ∅ as well. Also by assumption, the elements
aibj all have fixed points.

Observe that XG = XA ∩ XB, and suppose for the sake of contradiction the two
treesXA andXB are disjoint. Let γ be the geodesic between the trees, joining vertices
P → Q. Let P1 be a vertex which is one edge away from P → Q along γ. We know
there is a generator ai ∈ A which does not fix this particular point, since otherwise all
of A would. We now consider the geodesic aiγ : P → aiQ, which will also contain
aiP1 since group actions without inversions carry geodesics to geodesics. The fact that
a1P1 ̸= P1 shows there is no backtracking, so putting together aiQ → P → Q is a
geodesic. The situation we have looks like the following:

The path aiQ → Q shown above is the unique geodesic joining aiQ to Q. Now we
will use the key assumption that aibj has a fixed point. Note that aibjQ = aiQ.

We claim that the midpoint of our path aibjQ→ Q then has a midpoint fixed by aibj .
Indeed, consider an arbitrary element s with a fixed point. There are unique geodesics
Q → Xs and Xs → sQ (using the fact Xs is a tree), the latter obtained by applying
s and reversing. The union of these can be seen to have no backtracking by looking
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Figure 3: Diagram of the geodesics between the trees, from Serre’s “Trees”.

at the vertices neighboring Xs like we did with P1: they cannot be the same vertex,
otherwise they would belong to Xs.

Now use this observation on the present situation with aibjQ → Q, using the as-
sumption that aibj has a fixed point. The midpoint that is fixed must be P . Being
fixed by the ai already, we have bjP = P by acting by a−1

i . It follows P ∈ XB, which
contradicts the trees being disjoint. Thus, XG is nonempty.

A more practical form of this is the following, which is what we intend to use:

Lemma 2.35. LetG act on a treeX without inversions. Then if si generateG and
have fixed points, and sisj have fixed points as well, then XG is nonempty.

Proof. Use induction on the number of generators, with A = ⟨s1, . . . , sn−1⟩ and with
the new generator sn generating B in the previous lemma.

Thus, we now have a possible way to extend fixed points to all of G.

We now focus on producing group elements that are ensured to have fixed points, by
looking at nilpotent subgroups of G. A nilpotent group is one where the descending
central series terminates to {1} after finitely many steps.

Here, the lower central series is

G ≥ [G,G] ≥ [[G,G],G] ≥ [[[G,G],G],G] ≥ . . .
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where [G,G]means the subgroup generated by commutator elements [a, b] := aba−1b−1.
A nilpotent group should be thought of as a group which is not too far from being
abelian/commutative, its distance beingmeasured by the length of the descending cen-
tral series. For example, in an abelian group this series immediately terminates since
[G,G] is generated only by the identity.

Nilpotent subgroups have the following property that allows us to far more easily con-
struct fixed points.

Theorem 2.36. LetG be a nilpotent group acting on a treeXwithout inversions.
Then we have exactly one of the following:

• XG ̸= ∅.

• There is a straight path (infinite chain) T invariant under G on which G
acts via translations, though a nontrivial homomorphism G→ Z.

Sketch. These possibilities are mutually exclusive, since it turns out a group element s
having no fixed points is equivalent to an infinite straight path T on which s induces
a translation of nonzero amplitude. This is shown by Proposition 25 in section 6.4
of Serre’s “Trees”; roughly, the idea is that if s has no fixed points then P ̸= sP , so
m = infP ℓ(P, sP ) > 0. Taking T to be P such that ℓ(P, sP ) = m, this produces
the desired infinite straight path. Conversely, if we already have the infinite straight
path and the translation induced by s, we know from our previous argument that the
geodesic P → sP has a midpoint in Xs if Xs is nonempty. But this simply cannot
be the case for such a translation on an infinite path: the midpoint can be arbitrary
withinT if the translation is nontrivial, so in fact s fixesT and we get a contradiction.

Then we just need to show one of them must occur. This is where being nilpotent is
actually used. Take a composition sequence

1 ≤ G1 ≤ . . . ≤ G = Gn

where successive quotients are cyclic. If n = 0, we’re done as G is trivial. Otherwise,
apply the induction hypothesis onGn−1. IfGn−1 has a fixed point, use Lemma 2.34 to
deduce XG is nonempty. Namely, we look at the action of the cyclic group G/Gn−1

on XGn−1 .

IfGn−1 does not have a fixed point, it has an infinite straight pathT. As it is normal in
G, the path is stable under G and acts by a homomorphism G→ Aut(T) containing
a non-trivial group of translations in its image.
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IfG did not fixT, then wewould have a line gT. This would have to be disjoint fromT,
since by normality gGn−1g

−1 = Gn−1, hence Gn−1 still acts by the same nontrivial
translation on the tree. The point of intersection would give a contradiction, as the
point would be translated to two different points by the same group element. Now
if we have two disjoint lines where Gn−1 acts by a shift, the geodesic connecting two
points on these lines is also shifted. But this creates a cycle, and so we can only have
a single copy of T. It follows G fixes T, and we have a map G → Aut(T) describing
the action.

As T is a straight line, this rules out everything except Z and the infinite dihedral
group (the full isometry group of a straight line), the latter of which is not nilpotent
and so is ruled out. The claim then inductively follows.

Now we come to the key result allowing us to produce fixed points.

Lemma 2.37. LetG be a finitely generated nilpotent group acting without inver-
sions on a tree X.

• If g ∈ G has a power gn ∈ [G,G], then it has a fixed point.

• If G is generated by elements which have fixed points, it has a fixed point.

Proof. For the first item, if G has a fixed point we’re done. Otherwise, we look to the
infinite straight path T. By some power landing in [G,G], the image of g is trivial
under the homomorphismG→ Z used to act on T. Thus, T is fixed and g has a fixed
point.

For the second item, we are again done ifG has a fixed point so we look to the infinite
straight path. If G is generated by some si, at least one has a nontrivial image under
G→ Z acting on the tree. But then we know this is equivalent to si not having a fixed
point, violating the hypothesis. We are therefore only in the first case of Theorem
2.36.

Theorem 2.38. SL3(Z) has property FA.

Proof. Wewill use the previous lemma to produce elements with fixed points, and then
extend them to nilpotent subgroups with fixed points. This will allow us to apply the
original criterion to deduce XSL3(Z) ̸= 0 by finding generators si with fixed points,
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such that sisj also have fixed points (via showing subgroups containing si, sj have
fixed points).

Let SL3(Z) act on a tree X without inversions. Let i, j ∈ {1, 2, 3}, so and let eij
denote the elementary matrix which is zero except for the ij entry, which is one.

We have SL3(Z) = ⟨1 + eij⟩i ̸=j . These six generators are ordered as

z1 = 1 + e13, z2 = 1 + e23, z3 = 1 + e21

z4 = 1 + e31, z5 = 1 + e32, z0 = z6 = 1 + e12.

Indexing over Z/6Z, zi commutes with zi±1. The commutator [zi−1, zi+1] is z±1
i , so

in
Bi := ⟨zi−1, zi+1⟩

the element zi is in [Bi,Bi]. It follows that each zi has a fixed point onX by the previous
lemma. In particular, Bi is a nilpotent group generated by elements with fixed points
so again by the previous lemma XBi ̸= ∅.

It follows that zi have fixed points, and zi−1zi+1 have fixed points as well (being ele-
ments of Bi).

Because of the commutator relations among the zi, it follows SL3(Z) = ⟨z1, z3, z5⟩.
Moreover, these elements zi all have fixed points; using the fact that all products of
pairs of generators are of the form zi−1zi+1 for some i, we know all of these have fixed
points. Now use Lemma 2.34 to conclude XSL3(Z) is nonempty for any tree X.

Thus, SL3(Z) is not an amalgam.
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3 Applications to p-adic groups
Having sufficiently developed Bass-Serre theory, we will now apply it to understand
the structure of p-adic groups.

I will again be loosely following Serre’s book. One large difference will be that Serre
works with skew fields (where multiplication need not commute, for example quater-
nions) rather than only fields. It’s fine to do this since most properties of local skew
fields we need are the same and the theory of linear algebra largely carries over, but for
the sake of getting the point across with less confusion I’ll avoid this.

We’ll start with the construction of the Bruhat-Tits tree X, and proving some basic
properties about it (e.g. an explicit description of the tree). This first part follows
some of Bill Casselman’s notes, which I recommend looking at: https://ncatlab.org/
nlab/files/CasselmanOnBruhatTitsTree2014.pdf .

Wewill then study the action ofGL2(Qp) on the tree, seeing how a subgroupGL2(Qp)
+

acts without inversions. We’ll see how many important subgroups of GL2(Qp) reveal
themselves as stabilizers under theGL2(Qp) action on X. Then, using Bass-Serre the-
ory, we’ll write down certain subgroups G ≤ GL2(Qp)

+ as amalgams.

Finally, we’ll prove Ihara’s theorem. We’ll interpret this in terms of p-adic Schottsky
groups, and discuss how you can construct some curves from these.
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3.1 The Bruhat-Tits tree
We useQp to denote the p-adic numbers, and Zp for the p-adic integers.

We will largely be concerned with the groups

GL2(Qp) :

{(
a b
c d

)
: ad− bc ̸= 0, a, b, c, d ∈ Qp

}
and SL2(Qp) where ad − bc = 1. We will also study PGL2(Qp), the quotient of
GL2(Qp) by the scalar matrices λI2.

Both GL2(Qp) and SL2(Qp) have open compact subgroups GL2(Zp) and SL2(Zp).
These groups act on lattices, which we will now study.

Definition 3.1. A lattice inQ2
p is a finitely generatedZp-submodule ofQ2

p which
spans it as a vector space.

For example, Z2
p is a lattice.

Lemma 3.2. Every lattice inQ2
p is equivalent to Z

2
p via a change of basis. Specifi-

cally, we can write them all as

Zpα + Zpβ

for α, β ∈ Qp.

The following definition will make vertices of the Bruhat-Tits tree.

Definition 3.3. We say lattices L1 and L2 are equivalent if

L1 = λL2

for λ ∈ Qp.

The group GL2(Qp) acts on a lattice by applying the linear operator to each element
of the lattice. The action is transitive, as we can send basis elements anywhere we want.
We see that PGL2(Qp) acts on lattices up to equivalence since the scalar matrices in
GL2(Qp) don’t change an equivalence class. The subgroup

K = PGL2(Zp)
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fixes the class of the standard lattice Z2
p. We claim it is precisely the stabilizer of it.

Lemma 3.4. Thematrices inGL2(Qp) fixing the equivalence class of the standard
lattice Z2

p are precisely those in GL2(Zp).

Proof. First, we need to understand which pairs of elements generate standard lattice.
Take a choice of generators e1, e2. If we have another generating pair ae1 + be2 and

ce1 + de2, to produce e1 and e2 as a Zp-linear combination asks that
(
a b
c d

)
has

an inverse with entries in Zp. Thus, other generators are just pairs g · e1, g · e2 for
g ∈ GL2(Zp).

When we move to PGL2(Qp), we get PGL2(Zp) as the stabilizer of the class of the
standard lattice. In GL2(Qp), matrices besides those in GL2(Zp) can stabilize the
class of the standard lattice: we also have the matrices λI for λ ∈ Q×

p .

Now we further can note that PGL2(Qp) acts transitively on lattice classes inQ2
p. As

a result, equivalent lattices are in bijection with

PGL2(Qp)/PGL2(Zp).

These will form the vertices of the tree. For edges, we need to define a notion of dis-
tance.

Lemma 3.5. Given two lattices Λ1 and Λ2, we may find a basis

Λ1 = Zpv ⊕ Zpw

such that Λ2 = Zpp
nv ⊕ Zpp

mw for integersm and n. We may assume n ≥ m.

Proof. This claim is equivalent to the Cartan decomposition

GL2(Qp) =
∐
a∈A

GL2(Zp) · a ·GL2(Zp),

where A consists of matrices
(
pn 0
0 pm

)
with n ≥ m. This is often called a KAK

decomposition, with k ∈ K corresponding to GL2(Zp).
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Assuming this, without loss of generality Λ1 is the standard lattice and g · Λ1 = Λ2.
Writing g in this form k1ak2, sinceGL2(Zp) fixes the underlying lattice (just changes
the basis) we can actually just apply a to the basis.

We define d(Λ1,Λ2) = |n − m|. This is constant in an equivalence class of lattices,
and so is well-defined on the classes [Λ1], [Λ2].

Definition 3.6. The setX = PGL2(Qp)/PGL2(Zp) can be upgraded to a graph
by defining an edge between lattice classes in [Λ] and [Λ′] if d([Λ], [Λ′]) = 1. This
is called the Bruhat-Tits tree.

Thus, we have now defined a graph. The action of GL2(Qp) on a lattice class sends
neighboring classes to neighboring classes, since the values of n and m are preserved
in our bases for gΛ1 and gΛ2. Thus, we get an action on the graph.

Theorem 3.7. The graph X is a tree, and moreover it is p+ 1-regular.

Proof. First, we justify why X is a (p+ 1)-regular graph. The distance between classes
[Λ1] and [Λ2] is 1 if and only if we can pick representative lattices Λ1 and Λ2 such that

pΛ1 ⊆ Λ2 ⊆ Λ1.

If the distance is one, then we can write in some basis Λ1 = Zpv ⊕ Zpw and Λ2 =
pn+1Zpv ⊕ pnZpw. Then by scaling, we can instead pick a representative Λ′

2 ∈ [Λ2]
given by pZpv⊕Zpw. In this case, the desired containments hold. Conversely, putting
both lattices into normal form (v, w) for Λ1 and (pnv, pmw) for Λ2, for Λ2 ⊆ Λ1 we
needm ≥ 0. If pΛ1 ⊆ Λ2, n ≤ 1. The claim then follows.

All such classes [Λ2] can be found by enumerating lines in Λ1/pΛ1 ≃ F2
p. The reason

we consider lines is simply that we want to consider the class and not the specific
representative, so we must consider Λ2 and cΛ2 the same for c ∈ Qp. These lines are
given by points of P1(Fp), of which there are p+ 1.

Next, we will show that X is a tree. Given a particular lattice Λ1, each class [Λ2] ∈ X
has precisely one representative Λ2 satisfying

Λ2 ⊆ Λ1

and Λ1/Λ2 is monogenic, or cyclic as a Zp-module. Before, we asked for this to be
Zp/pZp ≃ Fp. The justification is similar to before, we just put both in the normal
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form. However, this applies for lattices of arbitrary distance d(Λ1,Λ2). If the quotient
is Z/pZ, then the two classes are neighbors: again use the normal form.

Now we show X is connected first. Given [Λ1] and [Λ2], pick representatives as done
above to get

Λ2 ⊆ Λ1

and Λ1/Λ2 ≃ Z/pdZ. Taking a Jordan-Holder sequence for this Zp-module we get
lattices

Λ2 = Ln ⊂ Ln−1 ⊂ . . . ⊂ L0 = Λ1.

Here, the successive quotients are Z/pZ so we get from the first argument that each is
distance one from the next. This produces a path.

Finally, we will see that we indeed have a tree. Suppose we have a path [Λ0], . . . , [Λn]
of classes of adjacent vertices in X, and that it has no backtracking. We want to show
this is not a circuit.

First, pick representatives Λi so

Λn ⊂ . . . ⊂ Λi+1 ⊂ Λi ⊂ . . .Λ0

and Λi/Λi+1 ≃ Z/pZ (equivalently, pΛi ⊂ Λi+1 ⊂ Λi). This chain can be turned
into the standard chain

Λn = pnZpv ⊕ Zpw ⊂ . . . ⊂ pZpv ⊕ Zpw ⊂ Zpv ⊕ Zpw = Λ0

by applying an element of GL2(Qp). This can be shown inductively: for a path of
length one it’s just our normal form. Assuming we can do it for a path of length n, do
it for n+ 1 by taking a matrix

g ∈
(
1 pnZp

0 1

)
.

Let’s see how to make this matrix. We know pΛn ⊂ Λn+1 ⊂ Λn corresponds to a line
inP(Λn/pΛn), and alsoΛn+1 ̸= pΛn−1 = pnZpv⊕pZpw as this creates backtracking.

In F2
p ≃ Λn/pΛn, we can take the basis given by images of pnv and w. The lattice

pΛn−1 then maps to the line through (1, 0). Then Λn+1, being a different line, cor-

responds to a line through some (y, 1), and we use
(
1 −y
0 1

)
to map it to the line

through (0, 1). Now use pnx for x ∈ Zp in the matrix, where x = −y when reduced
modulo p. This will definitely put Λn+1 in the desired form, and a matrix of this form
preserves Λ0, . . . ,Λn in the standard chain.
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At this point, we have seen any path without backtracking can be turned into the
standard chain via theGL2(Qp) action. However, this action is an action on the graph
X, so it follows that our original path was a circuit if and only if the standard chain is
a circuit. It is not, so the claim follows.

Before we move to studying carefully the action of GL2(Qp) on X, we will want to
understand how X connects to the story of lattices overR.

Before, we looked at the action of PGL2(R) by linear fractional transformations on
C \R, the union of the upper and lower half planes. We can equivalently understand
this as

P1(C) \P1(R),

since this just adds points at infinity which we get rid of. A better way to think about
this is that P1(C) parameterizes equivalence classes of lattices Z2 → C up to mul-
tiplication by a scalar. Note that this is not just classifying maps, since identifying
[v : w] with Zv ⊕ Zw picks a basis; no distinction is made between the same lattice
with different bases.

However, we don’t want all lattices. We want just the rank two ones. This corresponds
to removing P1(R), so P1(C) \P1(R) classifies rank two Z-lattices inC.

Remark 3.8. This is a really natural condition to think about lattices with re-
spect to in this setting: C/Λ for a rank two Z-lattice Λ is a complex torus. As a
Riemann surface, these are isomorphic when [Λ1] = [Λ2], the brackets denoting
the equivalence class of the lattice up to multiplication by c ∈ C×.

In the p-adic world, we have a thing called the Drinfeld upper half plane. This has its
points given by

ΩCp := P1(Cp) \P1(Qp),

where Cp is the completion of the algebraic closure of Qp, or Q̂p. This is a complete
algebraically closed field, likeC, and is in fact abstractly isomorphic toC. The group
PGL2(Qp) acts on ΩCp .

In particular, points of P1(Cp) \P1(Qp) correspond to rank twoQp-lattices inCp.

There is a natural PGL2(Qp)-equivariant map

ΩCp → X

sending a lattice in Cp to a norm on Q2
p given by restricting the valuation on Cp to

the image of the injective mapQ2
p → Cp.
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Remark 3.9. I skimmed over this in class because I didn’t want to get too into
the details (asCp can be quite confusing, and understandably so). Here is a more
in depth explanation of how to make the valuation

νCp : Cp → R ∪∞.

First, we’ll figure out how to do this forQp. It is a theorem there is a unique ex-
tension of νp : Qp → Z∪∞ to any finite extensionK/Q. The unique extension
is explicitly given by

νK :=
1

[K : Qp]
(νp ◦NK/Qp)

whereNK/Qp denotes the field norm. This is given by the determinant det(y) of
the linear map x 7→ yx onK as aQp-vector space for an element y ∈ K .

Now Qp is the union of all finite extensions (for pendants: direct limit with re-
spect to inclusions). We extend to νQp

: Qp → Q ∪∞ accordingly: to evaluate
on x, find an extension it lies in and use the norm there. The choice of extension
does not matter.

Now to move to Cp, we take the completion. This does not change the image of
the valuation: it is stillQ∪∞, and notR. This is because given a Cauchy sequence
of elements xi inQp, we define νCp to be the limit of the valuations νQp

inQ∪∞.
This is a limit entirely within Q and the valuation is non-Archimedean, so it just
becomes eventually constant and remains withinQ ∪∞. It does not take values
in all ofR∪∞, as you might initially believe. This defines νCp , which is what we
needed.

To see that our map ΩCp → X actually lands in X, we need to reinterpret X in terms
of norms.

Theorem 3.10. The topological space of X has its points naturally in bijection
with the set of equivalence classes of norms onQ2

p.

A norm on Q2
p is a function γ : Q2

p → R ∪∞ such that γ(x) = ∞ iff x = 0,
γ(cx) = ν(c) + γ(x) for c ∈ Qp and γ(x + y) ≥ inf(γ(x), γ(y)). They are
equivalent if γ − γ′ = C for a constant C .
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Given a vertex [Λ] set

γ(x) := − inf{n ∈ Z : pnx ∈ Λ}

for a representative Λ. For edges, if our point is (1 − t)[Λ] + t[Λ′], picking Λ =
Zpv ⊕ Zpw and Λ′ = pZpv ⊕ Zpw, set

γ(av + bw) = inf(ν(a)− t, ν(b)).

This interpolates between what happens at the edges; for example, t = 0 gives an
equivalent way to write the norm at [Λ].

Remark 3.11. It might be tempting to say there should be some sort of map from
P1(C)/P1(R) to a tree that one uses to study PGL2(R). However, the exis-
tence of such a tree is very much a p-adic phenomenon. Note that in defining
the norm on a lattice, we needed the non-Archimedean nature ofQp (being able
to use inf(ν(a), ν(b))) to get exactly what the norm should be, rather than some
inequality.

One can think ofX as describing what the reduction modulo p ofΩCp looks like.
Finding an analogous graph for the upper half plane would be asking for R to
have a residue field.

TheDrinfeld upper half spaceΩCp can be thought of as a “tubular neighborhood” of the
tree X. This can be a useful perspective for combinatorially understanding quotients
of ΩCp in terms of the tree X.
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3.2 Structure theory
Unfortunately, the group GL2(Qp) acts by inversions on the Bruhat-Tits tree X. As
an example, consider the path [Zp ⊕ Zp]→ [pZp ⊕ Zp]. The matrix(

0 p
1 0

)
swaps these two lattice classes, therefore creating an inversion.

However, it is true that an index two subgroupGL2(Qp)
+ does act without inversions.

Definition 3.12. The group GL2(Qp)
+ is defined as the kernel of

GL2(Qp) Qp Z Z/2Z.det ν

We use GL2(Qp)
0 to denote the kernel of GL2(Qp)→ Z. There are then inclu-

sions
SL2(Qp) ⊂ GL2(Qp)

0 ⊂ GL2(Qp)
+.

We will show GL2(Qp)
+ acts without inversions, so that all of its subgroups also do.

For a finite Zp-moduleM , let ℓ(M) denote the length as a Zp-module (the maximal
length of a chain of submodules). We will apply this to quotients of Zp-lattices.

Definition 3.13. Let Λ1 and Λ2 be lattices. We define

χ(Λ1,Λ2) = ℓ(Λ1/Λ3)− ℓ(Λ2/Λ3).

This does not depend on the choice of Λ3 ⊆ Λ1 ∩Λ2. You should think of this as
measuring the difference in size between these lattices (which is literally true in
the sense of Haar measures with respect to µ(Λ3) = 1).

Let ν denote the p-adic valuation. As it turns out, the following is true:

Lemma 3.14. We have
χ(Λ, gΛ) = ν(det(g)).

In particular, this only depends on g ∈ GL2(Qp).

Proof. Put gΛ in the normal formZpp
nv⊕Zpp

mw where Λ = Zpv⊕Zpw. The claim
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follows by computing both asm + n: ν(det(g)) is clear, since in the chosen basis we
have g = ak where a is the diagonal matrix with entries pn and pm and k ∈ GL2(Zp).
The determinant of the latter is a p-adic unit in Z×

p , and hence has valuation 0. We are
then left withm+ n.

Next, for χ(Λ, gΛ) we can take Λ3 to be pmin(0,a)Zp ⊕ pmin(0,b)Zp. A similar compu-
tation proves the result.

We saw χ(Λ, gΛ) = m+ n if we put gΛ in the normal form Zpp
nv ⊕ Zpp

mw where
Λ = Zpv ⊕ Zpw. Now note that

d(Λ, gΛ) = |a− b| ≡ a+ b (mod 2).

We then have ν(det(g)) ≡ d(Λ, gΛ) (mod 2).

Because of this, if g ∈ GL2(Qp)
+ then the distance between Λ and gΛ is always even.

It follows that we cannot have an inversion.

Since we want to directly apply Bass-Serre theory eventually, we will now restrict our-
selves to subgroups ofGL2(Qp)

+, and further to subgroups ofGL2(Qp)
0. In particu-

lar, all results apply to SL2(Qp).

All of the subgroups we will study arise as various stabilizers in the Bruhat-Tits tree.
The first we will look at are stabilizers of vertices, which we have already looked at in
the case ofGL2(Qp). There, we found the stabilizer of the standard lattice isGL2(Zp)
(although note that the stabilizer of the lattice class is Q×

p GL2(Zp)). For a particu-
lar lattice, the stabilizers are conjugates of GL2(Zp), so we get all maximal compact
subgroups of GL2(Qp).

In X, instead of individual lattices we look at classes lattices. It turns out these have
good behavior when we look at subgroups of GL2(Qp)

0.

Lemma 3.15. If G ≤ GL2(Qp)
0, then StabΛ = Stab[Λ].

This says that the stabilizers behave differently from the entire action of GL2(Qp),
where it is different between the lattice and the lattice class.

Proof. Pick a representative Λ of the class [Λ]. If there is a group element g ∈ G such
that gΛ = c · Λ for c ∈ Q×

p , then from its definition

χ(Λ, gΛ) = 2ν(c).

As g ∈ GL2(Qp)
0 we see that 2ν(c) = ν(det g) = 0 and hence ν(c) = 0.
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Thus, c ∈ Z×
p . It follows cΛ = Λ.

A nice consequence of this is the following. A bounded subgroup is one where all
g ∈ G have matrix entries gij with ν(gij) ≤ d for some fixed integer d.

Corollary 3.16. The maximal bounded subgroups of G ≤ GL2(Qp)
0 are pre-

cisely the stabilizers of vertices in X when acted upon by G.

Proof. It suffices to show thatG ≤ GL2(Qp)
0 is bounded if and only ifG leaves a ver-

tex x ∈ X fixed. Indeed, if this is the case then bounded subgroups ofG ≤ GL2(Qp)
0

are precisely those which have nontrivial fixed points. The maximal subgroups with
nontrivial fixed points are stabilizers, since any subgroup with a fixed point is con-
tained within the stabilizer of that fixed point by definition.

Now we show the revised claim. First, ifG ≤ GL2(Qp)
0 is bounded then we can find

a lattice stable underG. Pick a latticeΛ0 ⊆ Q2
p. PuttingΛ =

∑
g∈G gΛ0, the fact that

G is bounded means this remains a lattice as everything lands inside of p−dΛ0 for some
d (so in particular, it is a finitely generated, as it lands inside of a finitely generated
Zp-module).

By construction it is stable under G. It follows that for bounded G, it fixes a partic-
ular lattice. By the lemma, fixing a lattice is the same as fixing a lattice class. Hence,
bounded G have fixed points.

On the other hand, suppose that G has a fixed point on X. That means there is a
lattice Λ stable under G, by the lemma again. If there is a lattice stable under G, it is
immediate thatG is bounded, since it is containedwithin a conjugate ofGL2(Zp).

Thus, we see stabilizers of vertices give us important information about subgroups of
general G ≤ GL2(Qp)

0. Next, we look at stabilizers of edges.

Proposition 3.17. Let e be an edge of X with bounding vertices represented by

pΛ ⊂ Λ′ ⊂ Λ

and G ≤ GL2(Qp)
0. Then

Stab(e) = {g ∈ Stab([Λ]) : g ∈ GL(Λ/pΛ) fixes Λ′/Λ}.
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Since the stabilizer of the lattice classes agree with the stabilizers of the actual lat-
tices, the stabilizer of the edge can be identified with Stab(Λ) ∩ Stab(Λ′). Using the
inclusions

pΛ ⊂ Λ′ ⊂ Λ

we see additionally stabilizingΛ′ just means the reduction stabilizes the corresponding
line.

To give an explicit example, consider G = SL2(Qp). Then we get what’s called an
Iwahori subgroup, conjugate to those consisting of matrices(

a b
pc d

)
∈ SL2(Zp).

These Iwahori subgroups are quite important for number-theoretic applications, and
also play an important role in the structure of the group. With GLn(C), we have a
decomposition

GLn(C) =
∐
σ∈Sn

BσB

where σ denotes a permutation matrix, and B is the subgroup of upper triangular
matrices. We have a decomposition for p-adic groups that is similar in nature, where
B is replaced by an Iwahori subgroup. This is called the Iwahori decomposition.

Finally, we come to two additional types of subgroups that can be seen with stabilizers:
Borel and Cartan subgroups.

Definition 3.18. An end b of X is an infinite path with no backtracking.

An element g ∈ GL2(Qp) leaves an end b = [Λ0], [Λ1], . . . invariant if g[Λi] =
[Λi+d] for some fixed integer d and i≫ 0.

Ends of X can be neatly understood as elements of P1(Zp) = P1(Qp). To see this,
observe that we saw before that neighbors of a vertex are in bijection withP1(Z/pZ).
Extending this, vertices which are distance d away are parameterized by P1(Z/pdZ).
This is because points distance d away are given by Λ1 where pdΛ0 ⊂ Λ1 ⊂ Λ0 after
picking a representative Λ0 (this is precisely the monogenic quotient condition, just
rephased). These correspond to lines in Z/pdZ.

Now, what does it mean for these choices to be compatible? Well, we need an infi-
nite chain of sublattices of Λ0, and without backtracking. These are enumerated by
elements of

P1(Zp) ≃ lim←−P1(Z/pdZ) ≃ P1(lim←−Z/pdZ).
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I want to explain precisely what this notation means. An inverse limit of groups takes
a diagram like

. . .→ Z/pnZ→ Z/pn−1Z→ . . .→ Z/pZ

where each map is reduction modulo pi−1 from Z/piZ and produces a group G. The
group G is characterized by a universal property:

Definition 3.19. We say
G = lim←−Gi

for a system of groups Gi with maps fi : Gi → Gi−1 is the inverse limit of the Gi

if:

• It has maps πi : G→ Gi such that fi ◦ πi = πi−1

• It is universal with respect to this property.

This second conditionmeans there is a unique homomorphism fromG to any other
G′ equipped with such maps.

Remark 3.20. Confusingly, an inverse limit is actually a limit in Grp (and not a
colimit) in the category theory sense.

Practically, lim←−i
Gi can be described as

G = {g ∈
∏
i

Gi : gi−1 = fi(gi)}.

This has maps πi : G→ Gi given by projection to each Gi. By definition, the desired
diagram commutes: fi ◦ πi(g) = πi−1(g) = gi−1.

In our case, we see this description precisely describes a p-adic integer, by asking that
there are compatibilities in all the quotients Zp/p

nZp ≃ Z/pnZ. This just means that
it has a well-defined expansion as a p-adic integer: the projection maps a p-adic integer
to the truncated p-adic expansion

∑n
i=0 cip

i, and the compatibilities are checking that
the coefficients for lower powers of p remain the same.

We get P1(Zp) ≃ lim←−P1(Z/pdZ) by asking that there is a chain of adjacent vertices
distance one apart; the element ofP1(Z/pdZ) enumerates the vertex at distance d. If
reducing modulo pd−1 gives the previous vertex, they are adjacent. Thus, we arrive at
the following result:
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Lemma 3.21. Ends of X based at the standard lattice [Z2
p] are naturally enumer-

ated by elements of P1(Zp) = P1(Qp).

Now we want to compute the stabilizers of ends under the fullGL2(Qp) action, which
is much less difficult now given this description. Preserving an end is equivalent to
preserving the line in P1(Qp) under the natural action of GL2(Qp). Such elements
are enumerated by the Borel subgroup

B =

(
a b
0 d

)
with entries in Qp inside of GL2(Qp). These enumerate the stabilizers of ends; they
are all conjugate, depending on which line is stabilized.
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3.3 Amalgams and SL2

LetG ≤ GL2(Qp)
+ throughout this section. We will be using the fact thatG acts on

the Bruhat-Tits tree X without inversions to apply Bass-Serre theory.

Theorem 3.22. Suppose that the closure ofG contains SL2(Qp). Then it follows
that the fundamental domain for the action of G on the Bruhat-Tits tree X is a
single segment.

Proof. We’ll prove this by trying to write down exactly what the action is on edges and
vertices.

To begin, we look at vertices. Pick a basepoint [Λ], say Λ = Z2
p. We partition X into

X+ and X−, where X+ consists of vertices at an even distance from [Λ] and X− those
at an odd distance.

We saw previously that g ∈ GL2(Qp)
+ preserves the distance between vertices mod-

ulo 2, which we used to prove that it acts without inversions. This means that G pre-
serves this partition of X. We claim that the fundamental domain has two vertices, so
what we want to show is that for any [Λ+] ∈ X+ there is g ∈ G so g · [Λ] = [Λ+],
and similarly for X−. That is, G should act transitively on both components of the
partition.

This is where we use the fact that G contains SL2(Qp) in its closure, which forces G
to be just large enough so that this occurs. Suppose that [Λ+] is at distance 2n from
the standard lattice [Z2

p] = [Λ]. Using our normal form, pick a basis v, w of Λ = Z2
p

such that a representative Λ+ can be chosen as

Λ+ = pnZpv ⊕ p−nZpw.

We do this by appropriately scaling the normal form for any given representative, so
that the pair (n,m) in the normal form becomes (n,−n). Now let

s =

(
pn 0
0 p−n

)
.

Note that s is an element of the closure of G, since it lies in SL2(Qp).

Observe that sΛ = Λ+. As GL2(Zp) is open in GL2(Qp), we have

sGL2(Zp) ∩G ̸= ∅.
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Indeed, if s has an open neighborhoodU (such as sGL2(Zp)) that did not meetG, then
it cannot lie in the closure ofG: GL2(Qp) \U is closed and containsG. Then s would
not lie in a closed subset containing G, contradicting that it lies in the closure.

Thus, it cannot be the case that sGL2(Zp) dotes not intersect G. It follows that we
can write g = su for u ∈ GL2(Zp) = Aut(Z2

p) and g ∈ G, so this particular g will
also send [Λ] to [Λ+].

Now what about X−? The argument here is entirely analogous, because once we pick
a neighbor of [Z2

p] = [Λ] all we have done is pick a new lattice instead of the standard
lattice and the same argument applies.

Thus, the action has precisely two orbits consisting of X+ and X−. To deduce the
claim, we just need to verify that the group G acts transitively on edges.

Knowing what we do about vertices, it suffices to prove thatG acts transitively on the
edges connecting to the standard lattice [Z2

p]. To see this, suppose we take one of these
edges e and want to produce a group element sending it to some edge e′. Then e′ has a
bounding vertex [Λ+] which is inX+, so take g ∈ G sending [Z2

p] to that vertex. Then
it must be the case that some edge connecting to [Z2

p] is sent to e
′ by g: the action

of g induces a bijection between edges connecting to [Z2
p] and to [Λ+]. Thus, to send

e 7→ e′ first pick a group element sending e to the appropriate edge g−1(e′) connecting
to [Z2

p], and then act by g.

Recall that these adjacent edges are in bijectionwithP1(Fp), and the Stab[Λ] action on
them is via the element g ∈ GL(Λ/pΛ). Because the closure of G contains SL2(Qp),
the image of the homomorphism

Stab[Λ] → Aut(Λ/pΛ) = PGL2(Fp)

contains PSL2(Fp). But PSL2(Fp) still acts transitively on P1(Fp), so we are done.

Thus, we now know that X//G has graph of groups

•
StabΛ

•
StabΛ′ .

Stabe

where Λ and Λ′ are representative lattices in X+ and X−, and e an edge connecting
their classes.
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Corollary 3.23. We have

G ≃ StabΛ ∗Stabe StabΛ′ .

This follows from the main theorem of Bass-Serre theory, since G acts without inver-
sions due to being a subgroup of GL2(Qp)

+ From the previous section, we know the
stabilizers of these lattices are maximal compact subgroups ofG, and can describe the
stabilizer of the edge as an Iwahori subgroup.

In the specific case of SL2(Qp), we can make this a bit more explicit.

Corollary 3.24. We have

SL2(Qp) ≃ SL2(Zp) ∗I SL2(Zp)

where

I =

(
Zp Zp

pZp Zp

)
⊂ SL2(Zp)

is an Iwahori subgroup.

The injections here are the identity map, and(
a b
c d

)
7→

(
a pb

p−1c d

)
,

since the stabilizer of the vertex in X− is obtained by conjugate with the appropriate
element.

However, there are more clever ways that we can use this result. Note that we didn’t
explicitly ask thatG containSL2(Qp), only that its closure does. Thismeans our results
apply to groups like

SL2(Z[1/p]) ⊆ GL2(Qp)
+

which still contain SL2(Qp) in their closure. There, we can also obtain an amalgamated
product decomposition. We obtain in this case

SL2(Z[1/p]) ≃ SL2(Z) ∗Γ SL2(Z)

where Γ is the subgroup of SL2(Z) consisting of matrices
(
a b
c d

)
where p|c.
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3.4 Ihara’s theorem and Mumford uniformization
We’ll being with talking about uniformization overC.

Definition 3.25. A Riemann surface is a connected complex manifold of (com-
plex) dimension one.

Explicitly, we can take a Riemann surface to be a manifold equipped with charts
U → D where D is the unit disk in C. We ask that the transition maps are
holomorphic.

For example, C is a Riemann surface, and so is a complex torus C/Z2. Viewed as a
real manifold, they have dimension two (think of the torus example), and so they are
surfaces.

The genus of such a surface is the number of holes that it has. This can be computed
topologically through the fundamental group: π1(X)ab ≃ Z2g if the Riemann surface
has genus g. For example, a torus has genus one.

The usual uniformization uses the upper half plane. The idea is to find some sort of
highly symmetric object, and then study its quotients to produce a classification of
Riemann surfaces.

Let’s talk about the usual way this is done first. In the case of genus 0, nothing much
is happening. For genus one, these are precisely elliptic curves. They will be of the
form C/(Z ⊕ τZ) ≃ C×/qZ via the exponential map z 7→ exp(2πiz) and q =
exp(2πiτ). The main result is that this is isomorphic (as a Riemann surface) to the
complex solutions of the elliptic curve

Eq : y
2 + xy = x3 + a4(q)x+ a6(q)

where a4(q) and a6(q) are certain explicit power series. In summary, we have an ex-
plicit equation depending on q such that Eq(C) ≃ C×/qZ, and varying q parameter-
izes all genus one Riemann surfaces so we have produced explicit equations in general.
Note that we present this in a slightly different way than normal using C×/qZ. The
reason for this is thatC/(Z⊕τZ) does not translate very well p-adically, whileC×

p /q
Z

can make perfect sense.

For genus g ≥ 2, we can obtain any Riemann surface of genus g ≥ 2 as a quotientH/Γ
for Γ ≤ PSL2(R)+ discrete, torsion free, and cocompact (the quotient is compact).
The reason for this uniformization result is the following theorem.
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Theorem 3.26. Every simply connected Riemann surface is isomorphic to either
C,H or P1(C).

It follows that the universal cover of a Riemann surface, which can always be equipped
with a Riemann surface structure, must fall into one of these cases. The genus 0 and 1
cases are covered by P1(C) and C respectively (for example, all genus one Riemann
surfaces are C/Λ for a lattice Λ ⊂ C and hence have universal cover C). The genus
g ≥ 2 case always has universal cover H, which is why we should expect this sort of
uniformization.

However, this isn’t perfect to adapt to the p-adic setting, the main reason being that
the notion of simply connectedness is more complicated. In complex analysis, we also
have Schottky uniformization. This allows us to give a method for constructing the same
Riemann surfaces, but in a way that translates better to the p-adic setting because it
bypasses using a classification of possible universal covers.

Definition 3.27. A Schottky group is a subgroup Γ ≤ PSL2(C) constructed
in the following way. Take some point p ∈ P1(C), the Riemann sphere. Given
any Jordan curve (a non-intersecting continuous loop) not passing through p, it
divides P1(C) into two regions and we can define the exterior to be the region
containing p and the interior to be the region not containing p.

Now pick 2g Jordan curvesA1, . . . ,Ag,B1, . . . ,Bg with disjoint interiors. There
is a group Γ of elements in PSL2(C) (acting by linear fractional transformations
on P1(C)) consisting of the transformations which take the outside of Ai to the
inside of Bi. Any group obtained in this way is called a Schottky group.

It is unfortunately not true that all Schottky groups are obtained by taking Jordan
curves to be circles. One can show the following fact, which will lead us to the defini-
tion in the p-adic case.

Proposition 3.28. Any Schottky group Γ ≤ PSL2(C) is discrete, finitely gen-
erated, and free.

The converse is also possible with some technical additional requirements. Now, the
real content of this is the following procedure for producing an arbitrary closed Rie-
mann surface of genus g.

First, given a Schottky group Γ construct the limit set LΓ. This consists of the points
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in P1(C) which are obtained as limγn∈Γ γn(q) for q ∈ P1(C), and distinct γn.

Then, we can take P1(C) \ LΓ. This will construct our desired Riemann srufaces.

Theorem 3.29. Any compact Riemann surface of genus g ≥ 1 admits a Schottky
uniformization.

Proof. The argument is actually fairly short and neat, so I’ll give it here. Fist, let S be
a compact genus g ≥ 1 Riemann surface. By taking g curves independent in πab

1 , we
get a connected Riemann surface.

After cutting away these curves, call the resulting surface S̃. It is a theorem that this
is biholomorphic (that is, there is a holomorphic map with holomorphic inverse) to a
region in P1(C) with 2g boundary components Γ̃±

i . There is then a Möbius transfor-
mation γi sending Γ̃+

i to Γ̃−
i and also S̃ ∩ γi(S̃) = Γ̃−

i . The subgroup Γ of PSL2(C)
generated by the γi is Schottky, and S̃ is a fundamental domain for Γ. We recover S as

S̃/Γ = (
⋃
γ∈Γ

γ(S̃))/Γ.

Thus, any compact genus g Riemann surface can be produced as (P1(C)\LΓ)/Γ.

Let’s give an explicit example in genus one showing how to make a torus. Pick D0 and
D∞ to be small disks around 0 and∞ in P1(C). Then S̃ corresponds to the annulus
{z ∈ C : |z| ∈ [r1, r2]}. The element γ1 is z 7→ r2/r1 · z. The group Γ = ⟨γ1⟩ is just
Z, and the corresponding region is Ω = P1(C) − {0,∞}. Then we get the torus as
Ω/Γ, which effectively becomes S̃/γ1 identify the boundary components of an annulus
to get a torus.

Going the other way, say we have a torus S = C2/Λ. Take a side of the fundamental
parallelogram for Λ, and view this as a closed loop on S. Say Λ ≃ Z ⊕ Z, so we can
say that we took the segment from 0 to 1. Cutting this segment gives a cylinder, given
by gluing the two sides [0, i] and [1, 1 + i] together. The quotient C/Z is identified
withP1(C) \ {0,∞} via z 7→ exp(2πiz); we can therefore place the cylinder we got
by cutting S in this by applying this map. Indeed, the image of the cylinder under this
map is going to be {z : |z| ∈ [e−2π, 1]}, and the map z 7→ z + 1 on C induces the
Möbius transformation γ1 as before.

This turns out to be the correct one to consider in the p-adic world. We can define a
p-adic Schottky group as follows:
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Definition 3.30. A p-adic Schottky group is a free finitely generated discrete
subgroup Γ of PGL2(Qp).

We will try to do the same exact thing. As we saw with the Drinfeld upper half plane,
the correct analogue of P1(C) should be P1(Cp).

Definition 3.31. Set ΩΓ := P1(Cp) \ LΓ, where LΓ is the set of limit points
of the p-adic Schottky group Γ, defined in precisely the same way. Then ΩΓ still
admits a Γ action, and we can form a space ΩΓ/Γ.

There is additional p-adic analytic structure on this space beyond being a topological
space (like for a Riemann surface, where we have analytic structure), but it is beyond
the scope of the course. However, without going into this, we can still discuss the
meaningful consequences of this construction.

A projective curve overQp is the zero locus insidePn(Qp) of some homogeneous poly-
nomials with coefficients in Qp. We ask that it be irreducible (can’t break it up into
multiple components cut out by polynomials) and dimension one to be considered a
projective curve.

A smooth projective curve refers to the curve not having singularities; roughly, that we
don’t have any additional tangent lines. There is again a notion of genus for smooth
projective curves over an arbitrary field, although we cannot get away with a topolog-
ical definition anymore (the algebraic one will agree).

For example, consider y2 = x3 over C. This can be projectivized as y2z − x3 = 0,
so that the solutions make sense in P2(C). This has dimension one, since we’ve used
a single equation to cut the dimension down from two to one. However, at the point
(0, 0, 1), it is not smooth. This is because we can drawmultiple tangent lines: the curve
looks like a cusp.

The uniformization for genus oneRiemann surfaces we previously discussed shows that
overC they can be realized as projective curves (usually smooth). In particular, we saw
that any genus one Riemann surface can be realized as C/(Z ⊕ τZ). Then this was
isomorphic to the complex points of y2 + xy = x3 + a4(τ)x+ a6(τ), which is going
to be a projective curve once we add appropriate powers of z so that it cuts out a curve
in P2. In fact, we can always do such a thing in the compact case:
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Theorem 3.32. There is an equivalence of categories between compact Riemann
surfaces and smooth projective curves.

Thus, p-adically what we would like to see is that ΩΓ/Γ recovers the Cp solutions of
some p-adic smooth projective curve. This is remarkably indeed the case!

Theorem 3.33 (Mumford uniformization, paraphrased). LetΓ be a p-adic Schot-
tky group of rank g. Then there exists a curveXΓ (which is smooth projective and
of genus g overQp) such that there is a p-adic analytic isomorphism

ΩΓ/Γ ≃ XΓ(Cp).

The genus of the curve is the rank of Γ.

In particular, the construction again produces smooth projective curves just like it did
in the previous case.

Example 3.34. Suppose we are working in the genus one case. Then for |q| < 1,
we have

C×
p /q

Z ≃ Eq(Cp),

where Eq is again cut out by y2 + xy = x3 + a4(q)x+ a6(q), as the power series
make sense overQp.

Note that I am again hiding a bit of extra structure in this isomorphism: it is not just
talking about the topology but rather the analytic structure as well. This is just like we
hadwith genus oneRiemann surfacesC/(Z⊕τZ): they are all topologically equivalent
to tori, but the homeomorphism need not be a biholomorphism, that is, respecting the
analytic structure. The spaceC×

p /q
Z is called the Tate curve.

Our work on the Bruhat-Tits tree can help us simplify the definition of a p-adic Schot-
tky group.

Theorem 3.35 (Ihara). Every discrete torsion-free subgroupΓ ofPGL2(Qp) acts
freely on X and Γ is a free group.

Proof. We’ll show the action of Γ on the Bruhat-Tits tree X must actually be a free
action, since after that Bass-Serre theory finishes the theorem off.
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Indeed, if we had a nontrivial stabilizer then it would need to be a finite group since Γ
is discrete, and the stabilizer inPGL2(Qp) of a vertex isPGL2(Zp)which is compact.
A discrete subgroup of a compact group is finite, just for topological reasons.

Thus, the stabilizers of the action are at least finite. But a finite group G always has
torsion, which contradicts Γ being torsion-free since the stabilizer is a subgroup. It
follows that all stabilizers of vertices are trivial. There are no inversions, so the action
is free and by the subcase of Bass-Serre theory for free actions we conclude that Γ is
also free.

Thus, we can equivalently define a p-adic Schottky group as a discrete torsion-free
subgroup of PGL2(Qp).

The tree X helps us understand the curve XΓ quite explicitly when the genus is ≥ 2
(we need no help when g = 1 by the previous example).

Theorem 3.36. Suppose Γ has rank g ≥ 2. Then the curve XΓ has split degen-
erate stable reduction, and conversely any Qp-curve which has split degenerate
stable reduction is some XΓ up to isomorphism.

We call that curves XΓ we can produce Mumford curves. The takeaway here is that we
don’t produce all curves like we do overC, but we can tell exactly which curves we get.

Understanding the exact meaning of the theorem statement requires some algebraic
geometry, but we can explain the gist of what its implications are in a more elementary
way. By reduction, wemean that it is possible to choose equations overZp for the curve
(so that over Qp it behaves the same) and then reduce those coefficients modulo pZp

to get equations over Fp to define XΓ as a curve over Fp. Asking that the reduction
is “split degenerate stable” means we put some geometric conditions on what it looks
like.

Specifically, we ask for some control over singular points (points where it is not smooth)
on each irreducible component and what those look like, and that the irreducible com-
ponents after “desingularizing” them become copies of P1. Then, we ask that each of
these P1’s meet other components at at least 3 points.

TheseP1’s produce what is called the reduction graph. This is simply defined as the dual
graph of the P1’s: for each projective line we make that into a vertex of the graph. A
point of intersection between P1’s turns into an edge connecting those vertices. This
graph can be quite explicitly understood using the combinatorics of the Bruhat-Tits
tree X.
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It turns out that forP1(Cp) \P1(Qp), the reduction graph is X exactly. This is why I
said before that we can think of the Drinfeld upper half plane ΩCp as a tubular neigh-
borhood of X.

ForP1(Cp)\LΓ, the reduction graph is some subtreeXΓ ofXwhich still has an action
by Γ. The quotient of this graph XΓ by Γ gives the reduction graph. It is quite often
that we do not need to modify the Drinfeld upper half space, because the limit points
are precisely P1(Qp). So, we can produce many examples where the reduction graph
is literally a quotient of the the Bruhat-Tits tree X by some p-adic Schottky group.
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4 Ramanujan graphs
In this section, we’ll study a little bit of spectral graph theory and use the Bruhat-Tits
tree X to construct some interesting graphs as X/Γ, for Γ ≤ PGL2(Qp).

These graphs will be optimal expanders, or Ramanujan graphs. Roughly, this means
that they approximate random graphs extremely well; we can read off such properties
from the eigenvalues of the adjacency matrix.

While this will not be the way we prove that the graphs we construct are Ramanujan,
Mumford uniformization can also provide inspiration for an alternative construction
of Ramanujan graphs. The idea is roughly that X/Γ is a good potential source for
Ramanujan graphs since the graphs we get are (p+ 1)-regular and an infinite regular
tree has exactly the right eigenvalues to be Ramanujan.

We saw that the graphs X/Γ appear as reduction graphs of Mumford curves. It is pos-
sible to pick a curve over Q appearing in number theory and relate it to a Mumford
curve, and thereforematching up the reduction graphmodulo p. We can produce oper-
ators from the geometry of this curve, and these will induce the adjacency operator on
the graph. However, as they come from number theory there are then methods to con-
trol the eigenvalues. This approach actually reflects more of Ihara’s original approach,
which was to match up eigenvalues of the adjacency operator onX/Γwith eigenvalues
of Brandt matrices. Eichler’s trace formula then allows us to reinterpret the nontrivial
(not equal to p+ 1) eigenvalues as eigenvalues of Tp on cusp forms in S2(Γ0(q)), just
like we’ll do.

The approach we will take also uses number theory techniques, but will be done in a
much simpler way. The strategy I follow is outlined by Wen-Ching Winnie Li in https:
//royalsocietypublishing.org/doi/full/10.1098/rsta.2018.0441, §5. This has the disad-
vantage missing some of the beautiful geometry behind the construction of the graph,
but also has the advantage of being much simpler to write down and requiring less
number theory to appreciate.
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4.1 Spectra of graphs
The idea of this last part of the course will be to give constructions of particular graphs
which are good spectral expanders.

To begin, we’ll discuss the notion of a spectrum of a finite graph. Given a finite graph
G, we have an associated vector space

L2(G) := {functions G→ C} =
⊕
v∈G

C · δv

of functions on the graph. Here, the function δv outputs 1 when evaluated on v and 0
otherwise.

Remark 4.1. For an infinite graph, we ask that the absolute values |f(v)| are
square summable; we no longer include all functions.

There is a natural operator AG on L2(G), sending

f 7→ AG(f)(v) :=
∑
v′∈Nv

f(v′)

where Nv is the set of neighbors of v. That is, every value is replaced with the average
of those around it.

This linear operator AG is called the adjacency operator, since it uses vertices adjacent
to v in the definition. The corresponding matrix in the usual basis of delta functions δv
is the adjacency matrix, whose ij entry just indicates whether or not there is an edge
from vertex i to vertex j.

Example 4.2. Consider the following graphK3:

A B

C

The adjacency matrix of this graph is a 3 by 3 matrix, given by

AK3 =

0 1 1
1 0 1
1 1 0

 .
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This is symmetric, because our graph is y default undirected.

As a more interesting example, consider this graph with four vertices:

A B

C

D

The adjacency matrix is given by

AG =


0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0


Here, we make the matrix by ordering vertices as A,B,C,D. Note that our pre-
vious adjacency matrix appears as a submatrix, since it is a subgraph.

The adjacency matrix tells us a great deal about the graph. We will motivate the notion
of the spectrum of a graph, or the set of eigenvalues of the adjacency matrix, by making
some simple observations about its properties.

Lemma 4.3. The ij entry of of An
G counts the number of length n paths from vi

to vj .

Proof. This can be seen inductively from the definition of AG(f). Namely, we count
the length n−1 paths from vi to all neighbors of vj , and compute the number of length
n paths as the sum of these.

Let us nowmake the assumption thatG is a d-regular graph. Thismeans that the degree
of each vertex is d. Then the matrix

WG :=
1

d
AG

is called the weighted adjacency matrix. The corresponding operator is given by

1

|Nv|
∑
v′∈Nv

f(v′)
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since |Nv| = d by definition. The weighted adjacency operator now has the following
nice interpretation, similar to the previous lemma.

Lemma 4.4. Let f ∈ L2(G) be a probability distribution. ThenWn
G(f) gives the

probability we land on a vertex v after sampling our starting location according
to f and taking a length n random walk.

Proof. We normalized AG, so that it is now an averaging operator. Given probability
assignments after n− 1 step walks, we compute the probability for the length n walks
by averaging.

Thus, we can interpret WG as a sort of random walk matrix. If we think about the
stationary distribution, if we can diagonalize it’s clear that the rate of convergence of
Wn

Gf to a stationary distribution for n≫ 0 is governed by the magnitude of its eigen-
values: these determine how quickly in n it becomes like a projection to the stationary
distribution.

First, let’s assume that our d-regular graphG is connected. We would like for random
walks to converge to a stationary distribution over time, or for Wn

Gf to converge to
some probability distribution. What we will precisely mean by a stationary distribu-
tion is that we have π ∈ L2(G) a probability distribution (so

∑
v∈G π(g) = 1), and

WGπ = π.

There is an obvious candidate: π = (1/|G|, . . . , 1/|G|). This is an eigenvector with
eigenvalue one.

We would like there to always be a unique stationary distribution on a connected d-
regular graph. Unfortunately, this is not the case. Consider the graph with

WG =

(
0 1
1 0

)
.

A random walk here just oscillates: after diagonalizing, the eigenvalues are 1 and −1
so we never really get convergence. It turns out this happens if and only if G is not
bipartite.

Definition 4.5. Set π = (1/|G|, . . . , 1/|G|) ∈ L2(G) on a connected d-regular
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graph G. For such a G, define

λ(G) = max(|λ2|, |λn|) = max
v⊥π

∥WGv∥
∥v∥

.

Proposition 4.6. AssumingG is connected and d-regular. Let λ1 ≥ λ2 ≥ . . . ≥
λn be the eigenvalues ofWG. Then:

• λ1 = 1 > λ2 ≥ . . . ≥ λn ≥ −1.

• For any probability distribution f ∈ L2(G) we have

∥Wk
Gf − π∥ ≤ λ(G)k∥f − π∥.

• Assume G is not bipartite. ThenWk
Gf always converges to π.

Sketch. We sketch the argument briefly. Firstly, writing down WG as a matrix shows
immediately that ∥WGf∥ ≤ ∥f∥ (here we regard f as a vector, and take the usual
norm). Note also that it is real symmetric, which shows λ1 ≥ λ2 ≥ . . . ≥ λn since by
the by the spectral theorem it is diagonalizable with real eigenvalues.

We have constructed an eigenvector π = (1/|G|, . . . , 1/|G|) for 1, so we know that
λ1 = 1. To see that λ1 > λ2, suppose that there existed an additional eigenvector with
eigenvalue one. It turns out the dimension of the 1-eigenspace computes the number of
connected components ofG, so this is ruled out by the assumption thatG is connected.

Now for the second point, we again use the spectral theorem but appeal to the fact
that we can choose an orthonormal basis consisting of eigenvectors. Let v1, . . . , vn be
the corresponding orthonormal eigenvectors, and for a probability distribution f let
f =

∑
i fivi. Then

∥WGf − π∥2 =
n∑

i=2

λ2i f
2
i ≤ λ(G)2(f 2

2 + . . .+ f 2
n) = λ(G)2∥f − π∥2.

Thus, ∥Wk
Gf − π∥ ≤ λ(G)k∥f − π∥.

If G is not bipartite, then λn ̸= −1 and hence λ(G) < 1.

It is possible to slightly modify the notion of a random walk so that we always get con-
vergence to a stationary distribution. Regardless, what the previous proposition tells us
is that λ(G) controls the “mixing rate” ofG. A large value of λ intuitively corresponds
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to a graph that is bottlenecked in some way, which causes random walks to converge
slowly. A low value of λ causes rapid convergence. Intuitively, these behave close to
a random graph. This means they are well-connected, as random walks converge very
quickly. This is formalized by the expander mixing lemma.

Lemma 4.7. LetG be a d-regular connected graph on n vertices, and take λ as be-
fore. Let S,T be subsets of the vertex set ofG and let e(S,T) denote the number
of edges connecting members of S to T. Then we have∣∣∣∣e(S,T)− d|S||T|

n

∣∣∣∣ ≤ λ
√
|S||T|.

Note that this quantity being 0 is the expected value for a random graph.

63



Groups and Trees

4.2 Motivation for Ramanujan graphs
A natural question to ask is whether or not we can make graphs where λ is very small.

Definition 4.8. Let G be a d-regular connected graph. We say that G is an ε-
expander if λ(G) = maxv⊥π

∥WGv∥
∥v∥ < ε.

Small values of ε make better expansion, since for example random walks converge
faster or the mixing lemma tells us we have closer behavior to a random graph. The
advantage of such graphs is that they have properties of a random graph, but are psue-
dorandom: we can give concrete constructions of them.

The following result tells us that there is a sort of upper bound on how good of an
expander G can be.

Theorem 4.9 (weak version of Alon-Boppana). Fix d and ε > 0. Then there
exists n such that all connected d-regular graphs G with n vertices have

λ(G) >
2
√
d− 1

d
− ε.

Proof. We are equivalently claiming that for AG, max(|λ2|, |λn|) ≤ 2
√
d− 1. We

actually achieve equality for an infinite d-regular tree. This looks something like the
following:

Figure 4: An infinite 3-regular tree you might have seen before in connection to
SL2(Q2). Credit to Wikipedia.

Regarding the infinite d-regular tree G̃ as the universal cover of an arbitrary finite
d-regular graph G of size n, the intuition is that the universal cover has the best case
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spectral behavior. Consider a closed random walk γ starting at v ∈ G. Then there is
a unique lift to G̃. The lifts which are again closed random walks are precisely those
which have a trivial class in [γ] ∈ π1(G, v). Thus, the number of closed walks is at
least as many as in the infinite tree G̃.

Less closed walks starting from v corresponds to a smaller value of λ(G). Indeed, the
number of suchwalks is the some diagonal entry ofAk

G, and for k large this is controlled
by λ(G)k (we take λ(G) for the adjacency matrix, so everything is scaled up by d). By
adding these up for all v ∈ G we get the trace, and trAk

G ≤ dk+nλ(G)k . Thus, given
that we have at least as many walks as in the universal cover which meets the spectral
bound exactly, we see intuitively why the result should hold.

Let us make this precise now. The number of closed walks of length 2k for a vertex on
the infinite d-regular tree can be explicitly calculated as 1

k+1

(
2k
k

)
d(d− 1)k . It follows

that
n

k + 1

(
2k

k

)
d(d− 1)k ≤ trA2k

G ≤ dk + nλ(G)2k,

The first inequality comes from the previous covering space theory argument. We then
obtain a concrete lower bound

λ(G)2k ≥ 1

k + 1

(
2k

k

)
d(d− 1)k − d2k

n

Now take n→∞, and also k but keep k small relative to n. The second term d2k

n
goes

away, and the first term looks like Cd · 22k(d− 1)k (Cd is a constant depending on d)
using the Catalan number asymptotic, so taking 2kth roots we get the bound.

Thus, if we wish to construct a family of d-regular graphs the best we can really hope
for is that they all have λ(G) ≤ 2

√
d−1
d

.

Definition 4.10. A connected d-regular graphG is Ramanujan ifλ(G) ≤ 2
√
d−1
d

.

If we use the adjacency matrix for λ(G), the bound is just 2
√
d− 1 which is the defi-

nition you’ll usually see.

Due the properties that are immediate from this definition, such as optimal conver-
gence to a uniform distribution for random walks or optimal approximation of a ran-
dom graph, Ramanujan graphs are extremely useful in computer science. Explicit,
practical constructions of these are needed.
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4.3 Connecting back to the tree
We saw in the proof of the Alon-Boppana bound that an infinite d-regular tree is an
optimal expander, so from the beginning our strategy should be looking at quotients
of this tree and trying to understand what happens to the spectrum of the adjacency
operator.

In the case d = p+1, we can use the Bruhat-Tits treeX. This has the distinct advantage
thatwe already know an action ofPGL2(Qp) on it, and sowe can easilymake quotients
of X. The question is then which quotients are the right ones.

In this section, I’ll give a representation theoretic perspective for how to identify the
right subgroups. In the final section of the notes, I’ll give a different proof that takes
the perspective ofX/Γ describing the reduction of a curve modulo p and trying to give
a geometric interpretation for everything.

The subgroups we are interested in come from quaternion algebras.

Definition 4.11. A quaternion algebra overQ is a ringBwhich is a 4-dimensional
Q-vector space, such that there exist α, β ∈ B such that

α2 = a, β2 = b, βα = −αβ

for a, b ∈ Q×. We denote this algebra by
(
a,b
Q

)
.

The algebra B =
(
a,b
Q

)
comes equipped with a norm. Indeed, a general element θ can

be written as
θ = x+ yα+ zβ + wαβ,

with conjugate θ = x− yα− zβ − wαβ. The norm isN(θ) = θθ, which lies inQ.

If Bp := B ⊗ Qp is a division ring (i.e. every nonzero element has a multipliciative
inverse), we say p ramifies in B. We say∞ ramifies if B⊗R is a division ring as well.
Then we define the discriminant

disc(B) := ±
∏

p ramified

p

with a positive sign if B ⊗ R ≃ M2(R), the ring of 2 by 2 real matrices. Note that
over any field F , a quaternion algebra is either a division algebra orM2(F ).

Now take any quaternion algebra over Q of discriminant d which is ramified at∞,
and unramified at p. Call this B, and set

D := B×/Z,
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where Z is the center of the quaternion algebra.

Example 4.12. Take the standard Hamilton quaternions, Q ⊕ iQ ⊕ jQ ⊕ kQ
with i2 = j2 = k2 = −1 and ij = −ji = k. This is ramified at∞ because we
get the quaternions, which are division ring. This is unramified at any odd prime
p, so this suffices.

An order of B is a Z-submodule O where O ⊗ Q ≃ B which is a subring. Such a
subring necessarily consists of integral elements in B. An order is maximal if there is
no other order containing it; maximal orders are not unique for B. For example, in
M2(Q) a maximal order isM2(Z). We can write maximal orders as

O = Z⊕ Zω1 ⊕ Zω2 ⊕ Zω3,

for certain elements ωi.

We want to defineD(A) and B×(A) for a ringA; there are several choices of defining
the integral structure, and so for the sake of concreteness we pick a maximal order.

Definition 4.13. Pick a maximal orderO. DefineD(A) := (A⊗O)×/A×, and
B×(A) := (A⊗O)×.

Remark 4.14. In class, I wrote down how to define this in terms of solutions
to equations over A. This is equivalent to just picking a particular order (not
necessarily maximal), which is what we used for D(Z) and B×(Z).

Now we’re ready to define Γ.

Definition 4.15. Set Γ := D(Z[1/p]). Quite explicitly, this is

{x ∈ O : N(x) = ±pk}/{±pk}

as Z[1/p]× = {±pk}.

This is a subgroup of PGL2(Qp), using the fact that B is unramified at p (and so
B⊗Qp ≃ M2(Qp), the algebra of 2x2 matrices with entries inQp).
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Remark 4.16. Over Q, this is almost p-adic Schottky group as a subgroup of
PGL2(Qp). The only issue is that it may have elements of finite order. However,
it always contains a Schottky group of finite index.

We will show that X/Γ is a Ramanujan graph. Define

AQ := Q⊗Z (R×
∏
p

Zp)

where the product is taken over all primes p. Equivalently, we set

AQ ⊆ R×
∏
p

Qp

to be the subset of elements such that for almost all p the Qp component lies in Zp.
These are equivalent, because looking at the first definition when we interpret it as
a subset ofR ×

∏
pQp what we obtain are elements q · (x∞, x2, x3, x5, . . .) and the

effect of q is to multiply each component by q. However, q ∈ Zp for only finitely many
p. This means all but finitely many components must be within Zp. Conversely, given
an element x ∈ R×

∏
p Qp such that for almost all p the projection toQp lies in Zp,

take the finitely many p-adic places where xp ∈ pνZp for ν < 0, and set q ∈ Q to be
the product of these powers pν . Then we can write x as element ofQ⊗Z (R×

∏
p Zp),

since qZp = pνZp and hence we can choose x′p ∈ Zp so xp = qx′p.

This brings up a general construction.

Definition 4.17. Let Xi be topological spaces, and Ui open sets in Xi. The re-
stricted product

∏
i∈I(Xi,Ui) consists of elements of

∏
i∈IXi such that for all

but finitely many i the projection lies in Ui.

The ringAQ is given as a restricted product∏
v

(Qv,Ov)

where v is a prime or∞. At a prime p, we setOv = Zp and at∞ we setOv = R.

One might remark that we don’t have a ring of integers forR, so the definition might
seem a bit off. Surely the real place messes things up? Well, because we define the
restricted product to be elements ofR×

∏
pQp such that for almost all v the projection

lies inOv, changing a finite number ofOv does not matter. Thus, we can put whatever
we want forR, and it will not even change the result as a set.
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Another natural question you might have is why we don’t just take
∏

v Qv . After all,
the idea ofAQ seems to be to try to put together all of the completions in one place.
The problem is actually just a topological one:

Lemma 4.18. Let Xi be locally compact topological spaces. Then
∏

i Xi need not
be locally compact, but a restricted product where almost allUi are compact gives
a locally compact topological space.

The property of local compactness is quite important: all completions of Q have this
topological property, and it is crucial in many arguments in number theory so we want
to preserve it. For example, this topological property allows one to define a Fourier
transform on any completion of Q, and due to using a restricted product it is also
possible onAQ.

The key result in this is the following equality.

Theorem 4.19. As sets, we have

D(Q)\D(AQ)/D(R)
∏
q

D(Zq) ≃ X/Γ.

Here, H\G/K means the set of cosets HgK.

Proof. The strong approximation theorem says that D(Q)D(AS) is dense in D(AQ),
whereAS denotes the subring ofAQ given by∏

v∈S

Qv ×
∏
v ̸∈S

Zv

for a finite set of absolute values in S (among the p-adic ones, or the normal one | · |
givingR). In our case, take S to be the Archimedean absolute value and | · |p. Then in
the double coset, we get

D(Q)\D(Q) · (D(R)×D(Qp)×
∏
q ̸=p

D(Zq))/D(R)
∏
q

D(Zq).

Now we use that

D(Q) ∩ (D(R)×D(Qp)×
∏
q ̸=p

D(Zq)) = D(Z[1/p]).
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The reason is that Q ∩ R × Qp ×
∏

q ̸=p Zq is Z[1/p], using the embedding q 7→
(q, q, q, . . .) to put Q inside of AQ. Each of R,Qp,Zq are simply putting 0 in other
components. Thus, saying that a rational number lies in the intersection is to say that
it lies in Zq for q ̸= p; this means it lies in Z[1/p]. We conclude that the desired
intersection is D(Z[1/p]).

Now, use a result from group theory ifH andG are both subgroups of the same group:
H\H ·G is (H ∩G)\G as a set. The reason is

(H ∩G)\G→ H\H ·G

sending (H ∩ G)g → H(H ∩ G)g = Hg is a well-defined map of sets, and is a
bijection. It is certainly surjective, as elementsH ·G are by definition of the form h ·g,
and Hh · g = Hg. It is also injective: if g and g′ are sent to the same coset, they differ
by an element of H as Hg = Hg′. But then they differ by an element of H ∩G, being
in the same subgroupG. If they differ by an element ofH∩G, they are the same coset
in (H ∩G)\G.

Now apply this in our setting. We obtain

D(Z[1/p])\(D(R)×D(Qp)×
∏
q ̸=p

D(Zq))/D(R)
∏
q

D(Zq).

Cancelling, we get
D(Z[1/p])\D(Qp)/D(Zp).

Now we see why we reduce D modulo its center: when we do this, because B(Qp) ≃
M2(Qp)

× = GL2(Qp), we get

D(Z[1/p])\PGL2(Qp)/PGL2(Zp).

This is naturallyX/Γ, sincePGL2(Qp)/PGL2(Zp) has a natural graph structure.

The ability to rewrite X/Γ in this way may seem inconsequential, but this is very im-
portant once you know what this coset means. For this, we will need to delve into
modular forms.

Remark 4.20. For people concerned about whether or not strong approximation
applies, if we take a place which is unramified in our set S then it will apply for
an arbitrary quaternion algebra B×. We can deduce strong approximation for D
from B×.
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It is important to be careful about applying this: given a definite quaternion al-
gebra (like the one we are using), it is possible for strong approximation to fail.
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4.4 Modular forms
Recall the upper half plane comes equipped with an action of SL2 by Möbius transfor-

mations. Namely, given γ =

(
a b
c d

)
∈ SL2(Z), this acts on h via

z 7→ γ · z := az + b

cz + d
.

We now want to identify functions which respect this action on H.

Definition 4.21. A modular function of weight k for SL2(Z) is a function f :
H→ C which is holomorphic and f(γ · z) = (cz + d)kf(z) for γ ∈ SL2(Z).

One can define a modular form for a congruence subgroup as well.

Definition 4.22. Define Γ(N) := ker(SL2(Z)→ SL2(Z/NZ)). A congruence
subgroup Γ is a subgroup such that Γ(N) ⊆ Γ ⊂ SL2(Z) for some N . The
minimalN is called the level.

Lemma 4.23. Congruence subgroups are precisely SL2(Q) ∩ K, where K is a
compact open subgroup in SL2(Af ).

Then, we modular function for Γ of weight k has the same definition but we only apply
the condition for γ ∈ Γ.

It is not at all obvious that such functions exist. We can actually give an example,
however. Consider the Eisenstein series for k ∈ Z≥4 defined by

Gk(z) =
∑

(m,n)∈Z2\{(0,0}

1

(mz + n)k

for z ∈ H.

Lemma 4.24. The function Gk(z) is modular of weight k. It is 0 if k is odd, and
converges absolutely whenever k ≥ 2.

Proof. We’ll assume that you can already show it converges by checking absolute con-
vergence for k ≥ 2.
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First, it’s clear thatG2k+1 is identically zero becausewe can pair up (n,m) and (−n,−m).
This is fine to do, as we can check absolute convergence.

For G2k, we after acting by γ we get

G2k(γ·z) =
∑

(m,n)∈Z2\(0,0)

1

(maz+b
cz+d

+ n)2k
=

∑
(m,n)∈Z2\(0,0)

(cz + d)2k

(n(az + b) +m(cz + d))2k
.

But, this is just the same as

(cz + d)2k
∑

(m,n)∈Z2\(0,0)

1

(m′z + n′)2k

where (
m′

n′

)
=

(
c a
d b

)(
m
n

)
.

But, this induces a bijection on Z2 as the matrix is still in SL2(Z). It also sends 0 to 0.
So, this is actually a re-arrangement of G2k(z) and we are done.

Thus, we see the reason this example works boils down to SL2(Z) inducing a change
of basis on a Z-lattice.

Assume that Γ ⊇
〈(

1 1
0 1

)〉
≃ Z. Call this matrix T. The action of T on H

shifts z, so this condition implies that our modular function with respect to Γ satisfies
f(z + 1) = f(z). Then it makes sense to take a Fourier expansion of this function as
since it is periodic. We write

f(z) =
∑
n∈Z

an(y)e
2πinx.

We write this as
∑

n∈Z anq
n for q = e2πiz , where the an must be constant due to f

being holomorphic.

Not every modular function is so well behaved, so we impose extra conditions on the
Fourier expansion. Consider the map z 7→ q = e2πiz on H. This sends H to the
punctured unit disk D− {0}. In particular, we have an isomorphism

H/⟨T⟩ D− {0}≃

via this map, and as qn is a conformal map from H to the punctured unit disk we
can view the modular function as coming from a holomorphic function on the unit
disc q 7→

∑
n∈Z anq

n, as precomposing with our isomorphism gives back the modular
function. We would like this to be extendable to the origin (corresponding to i∞),
and in particular this means it should be bounded in a neighborhood of 0.
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Definition 4.25. Let f : H→ C be a modular function for Γ of weight k. This
is a modular form of weight k if it is holomorphic at∞. That is, an = 0 if n < 0.
We denote the set of modular forms of weight k byMk(Γ).

We call it a cusp form if additionally a0 = 0. The set of cusp forms is denoted
Sk(Γ).

Example 4.26. For SL2(Z),
⊕

kMk(SL2(Z)) = C[G4, G6]. One usually nor-
malizes G4 and G6 so they have Fourier expansions in Z[1/6][[q]]; we call these
E4 and E6.

Another specific case which is worth looking at is the case of the j-invariant, which
helps give a more down to earth example of why people are interested in these sorts of
functions at all.

Theorem 4.27. Theweight 0meromorphic modular functions are given byC(j),
where

j(z) :=
E3
4

∆
= 1728

E3
4

E3
4 − 27E2

6

.

The function j has a simple pole at∞.

We can see this by looking at H/SL2(Z). A modular function of weight 0 descends
to a function on this quotient, because the weight 0 condition means we are actually
just asking for it to be fully invariant. If we don’t add∞, then looking at the usual
fundamental domain

D = {z : Re(z) ∈ [−1/2, 1/2]} ∩ {z : |z| ≥ 1}

after we identify the Re(z) = −1/2 and 1/2 as well as the two segments [ω, i] and
[i,−ω] (T and S identify these) we get P1(C) \∞. Thus, adding∞ gives us P1(C).

If we ask that a weight zero modular function is holomorphic at∞, this is asking for a
holomorphic function onP1(C). This must then be constant as its image inC would
be bounded (as P1(C) is compact, hence the image is) and then we have a bounded
entire function which must be constant.

If we remove this condition, we getC(z) as the meromorphic functions. Thus, mero-
morphic modular functions are given by

H ∪∞/SL2(Z) ≃ P1(C)→ C
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where the map P1(C) → C is some rational function in C(z). The isomorphism is
called the j-function, and the just using z gives us amap toC. This gives us the function
j(z) as in the theorem, and we already know all meromorphic modular functions are
rational functions in j. It does not, however, give the explicit formula. We can verify
the explicit formula works: it is certainly a meromorphic modular function, and we
just need to check that it is injective on the fundamental domain. We can check the
image is closed and open in C, so it gives an isomorphism to CP1 once we add in
the point and infinity and check that the pole is simple (which can be checked from q
expansions).

The function j(z) is very relevant for classifying elliptic curves, or genus one Riemann
surfaces, overC.

Theorem 4.28. Genus one Riemann surfaces are all of the formC/Λ for a lattice
Λ. We have C/Λ ≃ C/Λ′ as Riemann surfaces precisely if Λ = cΛ′, where
c ∈ C×.

We sayΛ andΛ′ are homothetic in this case. The upper half planeH enumerates lattices
of the form Z ⊕ τZ for τ ∈ H up to homothety. We can see this by revisiting our
interpretation of P1(C)\P1(R) as moduli of lattices up to homothety with a chosen
basis. Note that any lattice Zω1⊕Zω2 can be put in the form Z⊕ ω1/ω2Z, and with
an appropriate choice of basis this lies in H. Because we normalized, these lattices
enumerated by H are not homothetic unless they are equal.

However, enumerating lattices withH still picks a basis. Andwhenwe pick a basis, it is
possible we enumerate the same homothety class of lattice multiple times inH. Using
the SL2(Z) action, the orbit of z ∈ H gives all the ways we can write the same lattice
up to a change of basis. Thus, we arrive at the conclusion that H/SL2(Z) enumerates
lattices up to homothety, without picking a basis.

Corollary 4.29. Genus one Riemann surfaces up to isomorphism are enumer-
ated by H/SL2(Z).

Note that j induces an isomorphism from H ∪ ∞/SL2(Z) to P1(C). In particu-
lar, it is injective on H/SL2(Z), and hence completely classifies genus one Riemann
surfaces! Additionally, since there is an equivalence of categories between genus one
Riemann surfaces and elliptic curves over C, this also provides a complete isomor-
phism invariant on elliptic curves. The situation is even better than this: evaluating
j on an elliptic curve can be explicitly calculated in terms of the coefficients of the
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equation for the elliptic curve. Take an elliptic curve E/C and write it in Weierstrass
form y2 = x3 + ax+ b. Then

j(E) = 1728
4a3

4a3 + 27b2
,

which is now simple to calculate.

We’ll now see an adelic enhancement of this theory, which will resemble the double
coset we encountered before. Our first hint that something adelic is going on is the
reinterpetation of congruence subgroups. For example, take Γ0(N), consisting of ma-
trices in SL2(Z) where the bottom left entry c is 0 modulo N . We can rewrite this
as

SL2(Q) ∩ SL2(R)×K∞

where K∞ ≤
∏

p SL2(Zp) consists of matrices
(
a b
c d

)
where after reducing mod-

ulo N the bottom left entry c becomes 0. Here, we embed SL2(Q) into SL2(AQ)
diagonally.

To see this, just note that we’re asking for q ∈ SL2(Q) such that q ∈ SL2(Zp) for
every p, so this already forces q ∈ SL2(Z). The congruence condition means N |c, so
we get the desired subgroup.

Theorem 4.30. We have

Γ0(N)\SL2(R) ≃ SL2(Q)\SL2(AQ)/K
∞.

Proof. This is not as hard as it looks. We have

SL2(AQ) = SL2(Q) · (SL2(R)×K∞),

for our particular choice. This is strong approximation. Now substitute this in. We get

SL2(Q)\SL2(AQ)/K
∞ = SL2(Q)\SL2(Q) · (SL2(R)×K∞)/K∞.

Now useH∩G\G ≃ H\H ·G, like we did before. This gives us, forH = SL2(Q) and
G = SL2(R)×K∞,

Γ0(N)\SL2(R)×K∞/K∞.

This is of course Γ0(N)\SL2(R).
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It follows that SL2(Q)\SL2(AQ)/K∞K∞ where K∞ = SO2(R) is Γ0(N)\H. This
is because SL2(R) acts transitively on H, with stabilizer SO2 (at i).

Thus,
Γ0(N)\H ≃ SL2(Q)\SL2(AQ)/K∞K∞,

which now looks awfully familiar whenN = 1. We can also do this for GL2.

Corollary 4.31. Now set K∞ to be K∞ ≤
∏

p GL2(Zp), again with c ≡ 0
(mod N) as the extra condition. Then

Γ0(N)\GL2(R)+ ≃ GL2(Q)\GL2(AQ)/K
∞.

Proof. It is essentially the same idea, we just check what happens with determinants.
We have all but finitely many components of K∞ equal to GL2(Zp), and we always
get all of Z×

p as the determinants. This produces enough determinants to allow us to
modify the decomposition for SL2(AQ) to get

GL2(AQ) = GL2(Q) · (GL2(R)+ ×K∞).

Now use the exact same idea, this time using GL2(Q) ∩ GL2(R)+ × K∞ = Γ0(N).
The determinant has to be positive, and moreover since it lies in GL2(Z) after taking
the intersection we see it is in fact one since determinants in GL2(Z) are ±1. This is
why we get a subgroup of SL2(Z) still. We obtain

Γ0(N)\GL2(R)+ ×K∞/K∞,

which shows the result.

Moreover, if we useR>0SO2(R) = K∞, we get

Γ0(N)\H = GL2(Q)\GL2(AQ)/K∞K∞.

This whole argument also eventually shows that we can lift modular forms to functions
on

GL2(Q)\GL2(AQ).

The reason is simply that we can lift the function to GL2(R)+ by f(r) := f(r · i).
Then use the previous result to try to interpret this adelically. We won’t get into this
since it’s not needed. Instead, we’ll look a slightly different interpretation that more
directly uses the previous result.
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For more general K∞, including the previous example, we can realize modular forms

as differential forms 2 f(z)dzk on Γ\H (say Γ = Γ0(N), matrices
(
a b
c d

)
in SL2(Z)

withN |c).

This can be explained informally as follows for weight k = 2. Suppose we have f(z)dz,
and we want it to make sense onH/Γ. Then we need f(z)dz to be invariant under the
action of γ ∈ Γ0(N). This means

f(z)dz = f(γ · z)d(γ · z).

But d(γ · z) = d(az+b
cz+d

) = ad−bc
(cz+d)2

dz. Thus, the condition is really asking that f have
weight 2.

These curvesΓ\H are calledmodular curves. The double coset we saw usingD is exactly
the analogue of this modular curve, but for division algebras. Note that these aren’t
too different, as GL2 actually comes from a division algebra too: M2(Q).

However, it is a lot simpler: instead of being a Riemann surface, it is now just a finite
set. This means modular forms are extremely simple objects in terms of this double
coset: there’s no reason to worry about differentials anymore, we just look at the ana-
logue of the modular curve.

Definition 4.32. A modular form of weight two of B× (for our desired congru-
ence subgroup) is given by a function

B×(Q)\B×(AQ)/B
×(R)

∏
q

B×(Zq)→ C.

Here, we use that this is a finite set. This vector space is denoted by S2(B
×).

Unlike the case ofGL2, we can non-canonically identifymodular formswith func-
tions on the modular curve (the finite double coset) because it is dimension 0.

Note that for GL2, K∞ was a proper subgroup of GL2(R) when we were writing a
modular curve adelically. The reason for this distinction is that B×(R) is compact,
and we make the subgroup for GL2 out of a maximal compact subgroup (O2(R)).

This double coset looks almost likeC[X/Γ]; we have just removedD, so it is no longer
obviously a quotient of the Bruhat-Tits tree. However, it turns out that this finite set
is still in bijection with X/Γ, so we will not need to define modular forms on D at all.

2These are symmetric differential forms: they are global sections of symmetric powers of the cotan-
gent bundle, and not exterior powers.
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In fact, this vector space is closely related to modular forms, which correspond toB =
M2(Q): there is a nontrivial theoremwhich sayswe have an injectionS2(B

×)/const ⊆
S2(Γ0(d)), where d = disc(B). We’ll see how to upgrade this correspondence later to
translate what happens with the adjacency operator. For now, we just want to observe
the following:

Theorem 4.33. There is a natural identification S2(B
×) ≃ C[X/Γ].

Proof. This amounts to computing the magnitude of the cosets, since these are both
justC-valued functions on a finite set.

We have, using strong approximation,

B×(Q)\B×(AQ)/B
×(R)

∏
q

B×(Zq) ≃ B×(Z[1/p])\B×(Qp)/B
×(Zp).

Now B×(Qp) ≃ GL2(Qp). We therefore end up with

B×(Z[1/p])\GL2(Qp)/GL2(Zp).

Now B×(Z[1/p]) is just {x ∈ O : N(x) = pk}. Viewing GL2(Qp)/GL2(Zp) as the
set of rank twoZp-lattices inQ2

p, note thatX = GL2(Qp)/p
ZGL2(Zp). That is, there

is a unique power of p taking Λ to any representative lattice for [Λ]; this comes from
Q×

p /Z
×
p ≃ pZ.

With this in mind, we want to count orbits of B×(Z[1/p]) on lattices. Looking at a
lattice class Λ, since pZ ∈ B×(Z[1/p]) the orbit at least contains all of [Λ]. In fact,
the orbit is then precisely all lattices in D(Z[1/p]) · [Λ], since D(Z[1/p]) is just what
we get after taking a quotient by±pZ. Note that±1 does nothing, as it stabilizes any
lattice.

It follows that orbits of B×(Z[1/p]) are in bijection with orbits of D(Z[1/p]), by

B×(Z[1/p]) · Λ 7→ D(Z[1/p]) · [Λ].

We can interpret what is happening as just enumerating the same orbits on X, but
instead expanding each [Λ] to all of its equivalent lattices.

We will now forgetD now that we have made this identification; the use ofD is purely
to make the original quotient obviously a (p+1)-regular graph arising from a quotient
of X, as the result is a bit trickier to deal with when using B×.
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4.5 Hecke operators on modular forms
We’ll first give the classical Hecke operators, and then move on to explaining what the
Hecke operators are for modular forms on D.

We will focus on the subgroup Γ0(N), since this is what we will look at later.

Definition 4.34. The subgroupΓ0(N) ⊆ SL2(Z) consists of thematrices
(
a b
c d

)
such that c ≡ 0 (mod N).

We are particularly interested in the operator Tp, so I will focus on this. This operator
can be given quite explicitly, just to convince you that it is directly computable.

Definition 4.35. We can define Tp onMk(Γ0(N)) where p ∤ N as

Tpf(z) := pk−1f(pz) +
1

p

p−1∑
a=0

f

(
z + a

p

)
.

If f =
∑

n anq
n is the Fourier expansion,

Tpf := pk−1
∑
n≥1

anq
pn +

∑
n≥1

apnq
n.

Define Tn via Tnm = TnTm if (n,m) = 1, and Tpr = TpTpr−1 − pTr−1
p .

Let’s see the utility of these operators in the special case ofS2(Γ0(N)). Recall we inter-
preted these as differentials f(z)dz on H/Γ0(N). Then, we define the inner product
by just integrating them:

⟨f, g⟩ := i

2

∫
H/Γ0(N)

f(z)g(z)dzdz =

∫
H/Γ0(N)

f(z)g(z)dxdy

where z = x+ iy. What’s happening in this computation is dzdz = (dx+ idy)(dx−
idy) = idydx− idxdy = −2idxdy.

Proposition 4.36. We have ⟨Tpf, g⟩ = ⟨f,Tpg⟩ when p ∤ N .

We can define Tmn = TnTm for (m,n) = 1, and Tpr = Tpr−1Tp − pk−1Tpr−2
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for p ∤ N . When p|N , we do not include the second term, and also define Tpf =∑
n≥1 apnq

n. This defines operators Tn for all n.

As a corollary, S2(Γ0(N)) admits a basis consisting of Hecke eigenforms, or f where
Tnf = λnf for all (n,N) = 1. Note that a1 in Tnf is an when (n,N) = 1 (we can
see this already for primes). This means λn = an when we normalize to get a1 = 1 in
the eigenforms, so the eigenvalues have meaning. For example, withN = 1 we get the
following:

Corollary 4.37. There is an orthonormal eigenbasis ofMk(SL2(Z)) consisting
of simultaneous eigenforms f for all Hecke operators Tn.

Proof. We can apply the spectral theorem!

The very classical way of thinking about these operators would be that we try to pro-
duce operators Tn on Sk(Γ0(N)) which respect the natural inner product, and also
have a nice expression in terms of the q-expansions so that we can learn about the
q-expansion from their eigenvalues.

We can make the origin of Hecke operators slightly clearer by explaining a uniform
construction that works for all congruence subgroups. Let Γ1 and Γ2 be congruence
subgroups of SL2(Z), and let GL+

2 (Q) be the group of 2 by 2 matrices with positive
determinant and entries inQ.

For α ∈ GL+
2 (Q), we can take a double coset

Γ1αΓ2 := {γ1αγ2 : γi ∈ Γi}.

There is an action on the left by Γ1. This decomposes the double coset into orbit spaces
Γ1βj , so that

Γ1αΓ2 =
∐
j

Γ1βj.

Theorem 4.38. There are finitely many representatives βj .

This allows us to define the Hecke operators.
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Definition 4.39. Let α ∈ GL+
2 (Q), and let Γ1 and Γ2 be congruence subgroups

as before. Define the operator Tα :Mk(Γ1)→Mk(Γ2) as sending

f 7→
∑

γ∈Γ1\Γ1αΓ2

f |γ =
∑
j

f |βj
,

where |βj
denotes the action of the matrix coset representative βj . We define this

as
f |γ(z) := (det γ)k/2(cz + d)−kf(γ · z).

For example, modularity for SL2(Z) can be expressed as invariance under this
action.

This takes in something inMk(Γ1) and produces a function, as there are finitely many
coset representatives and by modularity we can restrict to coset representatives. How-
ever, we would like for this to be inMk(Γ2).

Lemma 4.40. The operator Tα sendsMk(Γ1)→Mk(Γ2).

Proof. What we want is Tαf |γ = Tαf for γ ∈ Γ2. We have

Tαf |γ =
∑
j

f |βjγ.

Up to Γ1, this just permutes the βj . Indeed, βjγ ∈ Γ1αΓ2, as γ ∈ Γ2 and βj ∈ Γ1αΓ2.
Thenwhenwe decomposeΓ1αΓ2 into just cosetsΓ1βj , βjγ lies in someΓ1βγ(j). As f is
invariant for Γ1, we get

∑
j f |βjγ =

∑
j f |βγ(j)

. The map j 7→ γ(j) is a permutation,
as if βjγ and βj′γ lie in the same coset Γ1βγ(j), then we can deduce βj and βj′ lie in
the same coset.

Lemma 4.41. Cusp forms in Sk(Γ1) get sent to cusp forms in Sk(Γ2) by Tα.

Let us think about the special case where Γ1 = Γ2 = SL2(Z), and try to recover Tp.

We claim that this is given by Tα, where α =

(
p 0
0 1

)
.
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Lemma 4.42. We have

SL2(Z)

(
p 0
0 1

)
SL2(Z) =

∐
0≤a≤p−1

SL2(Z)

(
1 a
0 p

)
∪ SL2(Z)

(
p 0
0 1

)
.

We can interpret the left double coset as the determinant p integer matrices.

This gives us explicit coset representatives to work with.

Corollary 4.43. The corresponding Hecke operator for Tα is Tp up to a con-
stant.

Proof. Using the explicit coset representatives from the lemma, applying f |γ we obtain
the first definition of the Hecke operator.

I want to explain what is happening here a bit more geometrically, just in the case of
SL2(Z). Of course, it works just as well for arbitrary congruence subgroups. If we use
modular curves, we’ll see how this readily generalizes to S2(B

×), where we only have
access to a modular curve.

We get a diagram

Γ0(p)\H

SL2(Z)\H SL2(Z)\H

π1π2

sending an orbit [Γ0(p)z] 7→ [SL2(Z)z] for π2. For π1, we apply the isomorphism

Γ0(p)\H ≃ αΓ0(p)α
−1\H

and then the map induced by the inclusion of αΓ0(p)α
−1 into SL2(Z).

Then if we are just interested in weight 0, we can defineTpf := (π1)∗ ◦π∗
2f . The map

π2 pulls back f to a function on Γ0(p)\H, and π1 pushes it forward.

This works for weight two modular forms as well, by applying the same diagram but
using the operations on f(z)dz (so the differential also transforms). We note that such
forms get identified with S2(SL2(Z)).
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Theorem 4.44. This also recovers the Hecke operator Tp for S2(SL2(Z)), up to
a constant.

Proof. The initial pullback π∗
2f does nothing particularly interesting on weight two

cusp forms: it is simply telling us that a cusp form for SL2(Z) of weight two also
makes sense for Γ0(p). Thus, we can view it as the very same function f(z) but in
S2(Γ0(p)).

The final map (π1)∗ requires a bit more thought. Observe that if Γ = SL2(Z) then
α−1Γα ∩ Γ = Γ0(p). Then, π1 is explicitly given by the composition

(α−1Γα ∩ Γ)\H (αΓα−1 ∩ Γ)\H Γ\H.π̃1

The first map sends Γ0(p) · z 7→ (αΓ0(p)α
−1) ·αz. In effect, we send f to f |α−1 when

we push forward: you pull back by the inverse in this case.

We aim to understand preimages for the second map. In the case of second map π̃1
making up π1, explicitly ((π̃1)∗f)(z) :=

∑
y∈π−1

1 (z) f(y). The preimages, for given
[Γ · z] ∈ Γ\H, are given by acting on z by a coset in (αΓα−1 ∩ Γ)\Γ.

Now note that
(αΓα−1 ∩ Γ)\Γ ≃ Γ\Γα−1Γ.

The bijection here takes a coset representative βj in the right and writes βj = α−1γj
where γj ∈ SL2(Z) = Γ. These γj are the coset representatives on the left.

We therefore see what is happening now: we obtain
∑

j f(z)|α−1γj from (π1)∗, by
first applying α (the isomorphism) and then enumerating coset representatives to find
preimages. But as βj = α−1γj , we get the Hecke operator for α−1. This only differs as
a coset by a constant, and so it gives the same operator.

A very similar definition canwork forS2(B
×), thinking of these as also being functions

on the modular curve and essentially using the same diagram. If one translates the
previous definitions into adelic language, we see Γ0(p) only makes a change at p from
SL2(Z)whenwe look at corresponding subgroups ofGL2(Af ). Thus, the double coset
ends up being able to be reformulated in a way which is also local at p. Translating
to B× we would get the following definition, which I have simplified using strong
approximation.
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Definition 4.45. Let f ∈ S2(B
×), thought of as a function on B×(Z[1/p]) \

GL2(Qp)/GL2(Zp). Then

Tpf(γ) :=
∑
j

f(γβj)

where

GL2(Zp)

(
p 0
0 1

)
GL2(Zp) =

∐
j

GL2(Zp)βj.

Now for the main point:

Theorem 4.46. Under the identification

B×(Q)\B×(AQ)/B
×(R)

∏
q

B×(Zq) ≃ X/Γ

and hence function spaces S2(B
×) ≃ C[X/Γ], the Hecke operator Tp corre-

sponds to the adjacency operator.

Proof. This amounts to unraveling definitions at this point: we just need to push the
definition of Hecke operators through this identification.

Consider a function f on X/Γ. We know this is the same as the double coset

B×(Z[1/p]) \GL2(Qp)/GL2(Zp).

Viewing f as a function there, we now take GL2(Zp)

(
p 0
0 1

)
GL2(Zp) and decom-

pose it as cosets
∐

j GL2(Zp)βj , and we know Tpf(γ) =
∑

j f(γβj).

We now view f as a B×(Z[1/p])-invariant function onGL2(Qp)/GL2(Zp), or equiv-
alently a D×(Z[1/p])-invariant function on X after sending Λ 7→ [Λ]; we’ve already
checked that such functions are constant on all lattices in a lattice class, by identifying
S2(B

×) withC[X/Γ].

The action of
(
p 0
0 1

)
as an element ofB×(Qp) = GL2(Qp) sends [Z2

p] to a particular

neighbor: the distance betweenZp⊕Zp and pZp⊕Zp is 1. The action of an element in

GL2(Zp)

(
p 0
0 1

)
GL2(Zp) first fixes [Z2

p], then sends it to a neighbor, and then sends
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it to another neighbor; the coset representativesβj simply go through all the neighbors.
It follows that the Hecke operator sends f(x) 7→ Tpf(x) :=

∑
d(x,y)=1 f(y), or is just

the adjacency operator.

Thus, we are reduced to computing the eigenvalues of Tp on S2(B
×).
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4.6 Putting it all together
We have now seen that the adjacency matrix on X/Γ can be interpreted as the Hecke
operator Tp on S2(B

×). As I mentioned before, I slightly lied to you about what
S2(B

×) officially is: if we want to be consistent with the more general theory of auto-
morphic forms, we want to remove the constant functions and not consider them as
cusp forms. Our definition of a Hecke operator does make sense on the larger vector
space.

Instead, what this amounts to is adding a one dimensional (p+1)-eigenspace consisting
of constant functions for Tp on S2(B

×), or equivalently the adjacency operator on
C[X/Γ].

The following theorem relates the usual definition of cusp forms on B× to classical
cusp forms.

Theorem 4.47 (Old fashioned Jacquet-Langlands). There is a Hecke-equivariant
isomorphism

φ : S2(B)/const ≃ S ⊆ S2(Γ0(d)).

By equivariant, we mean in particular that

S2(B)/const S2(Γ0(d))

S2(B)/const S2(Γ0(d))

φ

Tp Tp

φ

commutes.

In particular, the eigenvalues are the same. This is because if we have an eigenform f
in S2(B)/const, then Tpf = λf . But we have a linear isomorphism, so φ(Tpf) =
Tpφ(f) is also φ(λf) = λφ(f), and so Tpφ(f) = λφ(f). It follows that if eigen-
values of Tp on S2(Γ0(d)) satisfy the desired bounds, then so do eigenvalues of Tp on
S2(B)/const.

We can compute eigenvalues for Tp via classical theory on S2(Γ0(d)), which gives
us access to a wealth of new tools. The proof of the following claim uses some more
difficult algebraic geometry (and is complicated as well), so we’ll skip the full argument.
If you are interested, you can take a look at Diamond and Shurman’s A first course in
modular forms. A good chunk of the book is essentially dedicated to this result.
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Theorem 4.48. The eigenvalues of Tp are bounded by 2
√
p on S2(Γ0(N)).

Thus, we have shown X/Γ is Ramanujan!
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