EDUCATION

Harvard PhD in Mathematics	2022- Present
MIT Mathematics	2018 - 2022 5.0/5.0 GPA
The Newman School, Boston, MA Valedictorian	2014-2018

RESEARCH INTERESTS

I am interested in number theory, algebraic geometry, and representation theory.

PUBLICATIONS

Filtrations on block subalgebras of restricted universal enveloping algebras Journal of Algebra and Applications	2021
Computing <i>L</i> -polynomials of Picard curves in polylogarithmic time <i>Mathematics of Computation</i>	2021
Coefficients of Gaussian Polynomials Modulo <i>N</i> <i>Electronic Journal of Combinatorics</i>	2020

RESEARCH

Extensions of mod *p* **representations of local division algebras** 2021-REU project at UMichigan, supervised by Prof. Tasho Kaletha and Karol Koziol. Determines the extension groups of smooth irreducible representations of a division algebra *D* over a non-Archimedean local field by studying the structure of $H^{\bullet}(I_1, \pi)$ where $I_1 = 1 + \varpi_D \mathcal{O}_D$ and π is some irreducible representation of D^{\times} . We have submitted this to the *Journal de Théorie des Nombres de Bordeaux*. Can be accessed here.

Filtrations on block subalgebras of restricted universal enveloping algebras2020-2021Project for Summer Program in Undergraduate Research at MIT suggested by Prof. Roman Bezrukavnikov.Studies the associated graded algebras for the PBW filtration and related filtrations on blocks of restricteduniversal enveloping algebras. Published in the Journal of Algebra and its Applications. Can be accessedhere.

Computing L -polynomials of Picard curves in polylogarithmic time	2019-2021
Project suggested by Prof. Andrew Sutherland. Develops and implements the first practical	algorithm
to compute the zeta function of a curve in genus > 2 . The implementation was done in S	
PARI/GP, and has applications to cryptography. Published in Mathematics of Computation, and can be	
accessed here.	

Coefficients of Gaussian Polynomials Modulo N	2018
Resolves and extends a conjecture of Prof. Richard Stanley. Finalist in 2018 Regeneron STS. P.	resented
at MAA Undergraduate Poster Session at JMM in January, 2018. Published in The Electronic J	ournal of
<i>Combinatorics</i> . Can be accessed here.	

AWARDS

NSF Fellowship	2022
Regeneron STS Finalist	2018

TEACHING AND OTHER ACTIVITIES

DRP Mentor Mentored an undergraduate student in étale cohomology and <i>p</i> -adic Hodge theory.	2023
Head Counselor at PROMYS Managed program for motivated high school students learning number theory.	2022
Mentor for 18.S097 Mentor for a proof-writing workshop.	2021
Directed Reading Program at MIT Studied algebraic topology in 2019, differential geometry in 2020, and Deligne-Luszt	2019-2021 tig theory in 2021.
Summer HSSP Program Developed course and taught high school students linear algebra.	2019
MIT Splash Taught short course in 2019 on covering spaces to interested high school students. 2021 on elliptic curve cryptography and elliptic curves over C .	2019, 2021 Taught a course in

LANGUAGES/TOOLS

Java, Python, Sage, PARI/GP, LATEX