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Simpson’s motivicity conjecture

Let X/C be a smooth projective variety.

Theorem (Simpson)

There exists a quasi-projective moduli space MdR(X,L, r) of
stable rank r flat vector bundles (E,∇) together with
detE ≃ (L,∇L).

We say (E,∇) is rigid if [(E,∇)] is an isolated point in the
moduli scheme. We will make the additional assumption that L
is torsion throughout.

Conjecture (Motivicity)

Any rigid flat connection is a subquotient of a Gauss-Manin
connection.

This is asking that the underlying local system of flat sections is
a summand of Rif∗C, where f : Y → U ⊆ X is smooth
projective and U is a dense open.
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Curvature

In characteristic 0, connections on E are flat/integrable if and
only if the induced map

DerX/k → Endk(E)

via sending ∂ 7→ ∇∂ is a Lie algebra homomorphism, defined as
the composition

E E⊗ Ω1
X/k E⊗OX ≃ E.∇ ∂

The usual notion is K = ∇2 : E → E⊗ Ω2
X/k being zero. Our

map being a Lie algebra homomorphism asks for

[∇∂1 ,∇∂2 ]−∇[∂1,∂2] = 0,

but this is actually the composition

E E⊗ Ω2
X/k E⊗OX ≃ E.K ∂1∧∂2

Thus, this also characterizes flat connections. We will see this is
a more fruitful perspective.
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p-curvature

In characteristic p, flat connections can have p-curvature. This
is when

DerX/k → Endk(E)

fails to be a map of sheaves of restricted Lie algebras.
A restricted Lie algebra is Lie algebra g over a field k of
characteristic p > 0, equipped with an additional p-operation
X → X[p]. This must satisfy some additional axioms.

Example

Let G/k be a reductive group. Then g is a restricted Lie
algebra with the p-operation induced by Frobenius.

One motivation for this, beyond simply observing extra Lie
algebra structure exists, is that vanishing curvature and
p-curvature ensures E is spanned Zariski-locally by solutions to
∇(e) = 0.
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p-curvature

For a flat connection ∇, p-curvature is a map

ψ : E → E⊗ Ω1
X/k

given by
ψ(e)(∂) := ∇p

∂(e)−∇∂p(e).

For any derivation ∂ this defines an endomorphism of E. We
obtain a map

ψ(∇) : DerX/k → Endk(E),

vanishing iff the map induced by the connection is a
homomorphism of restricted Lie algebras.

The following is due to Katz, which connects this to the
motivicity conjecture.

Theorem (Katz)

Let k be a perfect field of characteristic p > 0. Then
Gauss-Manin connections have nilpotent p-curvature.
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Main theorem

Subquotients of the Gauss-Manin connections have nilpotent
p-curvature, so a consequence of motivicity is that mod p
reductions of rigid flat connections have nilpotent p-curvature
when p is large.

Theorem (Esnault-Groechenig)

Let X be a smooth connected projective variety over C, and let
(E,∇) be a rigid flat connection with torsion determinant L.
Then there is a scheme S/ SpecZ of finite type so that
(X, (E,∇)) has a model (XS, (ES,∇S)) such that for every closed
point s (Es,∇s) has nilpotent p-curvature.

This is proved without assuming motivicity, and so provides
some evidence for the conjecture.
Unless otherwise noted, all results are due to Esnault and
Groechenig.
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Main theorem

The Higgs field of a stable rigid Higgs bundle is always
nilpotent, otherwise we can produce a nontrivial deformation
with λθ: this can be seen by looking at the effect on the Hitchin
map

MDol → A

if we assume the output is nonzero.

For flat connections we cannot use this simple idea in
characteristic p as λ∇ need not be a connection.

Since it works over C we can get nilpotence on the Higgs side
even for reductions Xs. In non-abelian Hodge theory in
characteristic p, the corresponding condition is nilpotence of
p-curvature. Thus, we attempt to use non-abelian Hodge
theory in characteristic p to leverage this and prove the
theorem.
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Proof idea

More precisely, the proof idea is the following:

Construct a model (XS,LS) with good properties. We want
models for rigid flat connections and rigid Higgs bundles so
the statement makes sense.

Note that we can make rigid Higgs bundles automatically
nilpotent, like they are over C.

Using Ogus-Vologodsky’s results on non-abelian Hodge
theory in characteristic p, use char(k(s)) > D to make rigid

Higgs bundles on X
(p)
s sufficiently nilpotent to correspond

to rigid flat vector bundles on Xs with nilpotent
p-curvature.

Deduce the result by comparing the number of rigid Higgs

bundles on X
(p)
s and rigid flat vector bundles on Xs. This

uses usual non-abelian Hodge theory over C.
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Arithmetic models

Let (X,L) be as before.

Definition

A arithmetic model is a morphism

XS → S

along with a line bundle LS such that:

S is finite type and smooth over SpecZ.

S has a unique generic point η, with k(η) ⊆ C.

Along the map SpecC → S, the base change map induces
an isomorphism

XS ×S SpecC ≃ X.

The map XS → S is smooth and projective.

There is LS ∈ Pic(XS) pulling back to L.
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Nice models

W want to choose a particularly nice arithmetic model that
gives good properties for the moduli space. There are moduli
schemes

MdR(XS/S,LS, r) → S

and similarly for Higgs bundles.

Definition

Given a moduli scheme M → S, let Mrig be the largest open
subscheme where the structure map is quasifinite.

We want certain arithmetic models we call nice models is to
ensure good properties of these moduli spaces with respect to
rigidity.
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Nice models

For every positive integer r it is shown there exists an affine
arithmetic scheme S and an arithmetic model (XS,LS) of (X,L)
with several good properties.

(Spreading out). For every rigid flat connection (EC,∇C)
over X with determinant L and rank ≤ r, there exists a
spreading out (ES,∇S) over XS which is stable at geometric
points. The same holds for rigid Higgs bundles, and θS can be
assumed nilpotent.

We want this property to be able to see information about
Higgs bundles and flat connections over C so that we have
models for (E,∇) like in the target theorem.

21 / 41



Nice models

For every positive integer r it is shown there exists an affine
arithmetic scheme S and an arithmetic model (XS,LS) of (X,L)
with several good properties.

(Spreading out). For every rigid flat connection (EC,∇C)
over X with determinant L and rank ≤ r, there exists a
spreading out (ES,∇S) over XS which is stable at geometric
points. The same holds for rigid Higgs bundles, and θS can be
assumed nilpotent.

We want this property to be able to see information about
Higgs bundles and flat connections over C so that we have
models for (E,∇) like in the target theorem.

22 / 41



Nice models

Next, we want some compatibility with rigidity: understanding
the rigid connections on Xs is important in the strategy.

(Compatibility with the rigid locus I). We ask that the S
points

[ES,∇S] : S → MdR(XS/S,LS,≤ r)

and also [ES, θS] given by the previous property factor through
the subschemes Mrig

dR(XS/S,LS,≤ r) and Mrig
Dol(XS/S,LS,≤ r).

(Compatibility with the rigid locus II). Further, for every

y ∈ |Mrig
dR(XS/S,LS,≤ r)|,

there exists a family (XS,∇S) such that y ∈ [ES,∇S](|S|) (the
set-theoretic image). The same holds for Higgs bundles.
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Frobenius twists

Before moving to the next step of the proof let us review some
definitions about Frobenius twists.

X(p) := X×f Spec k where f : k → k sends x 7→ xp.

The absolute Frobenius F is given on rings by x 7→ xp,
giving an k-scheme X a map

F : X → X.

The relative Frobenius FX/k is defined by the diagram

X

X(p) X

Spec k Spec k

F

FX/k

f
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Ogus-Vologodsky

Theorem (Ogus-Vologodsky)

Let k be a perfect field of characteristic p > 0. Then a lifting
X → SpecW2(k) of X → Spec k induces an equivalence of
categories

C−1
X/W2(k)

: Higgsp−1(X
(p)) → MICp−1(X).

The left hand side is the category of stable Higgs bundles with
nilpotence ≤ p− 1 (θp−1 = 0), and the right side is flat vector
bundles (E,∇) with degree of nilpotence of p-curvature ≤ p− 1
(ψ(∇)p−1 = 0).

This will allow us to transport nilpotence on the Higgs side to
our desired nilpotence of p-curvature.
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Ogus-Vologodsky

Let FX/k be the relative Frobenius X → X(p), given by
universality of the fibre product. Under this,

C−1(E, 0) = (F∗
X/kE,∇

can).

The canonical connection is uniquely characterized by

∇can(s) = 0

if and only if s ∈ F−1
X/kE(U) (it is naturally in F∗

X/kE(U)).

The Cartier transform C−1 can also be used to extend the
classical result of Deligne-Illusie:

(FX/k)∗τ<p−ℓ(E⊗ Ω•
X/k) ≃ τ<p−ℓ(CX/W2(k)(E)⊗ Ω•

X(p)/k
)

if E is nilpotent of level ℓ. Take E = (OX, d) to recover the
result: C−1(OX(p) , 0) yields this.
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Applying Ogus-Vologodsky

Pick a nice model XS. The following uses the compatibility with
the rigid locus.

Proposition (Esnault-Groechenig)

There exists an integer D > 0 depending on XS/S such that for
any closed s ∈ S with char(k(s)) > D the Ogus-Vologodsky
correspondence sends any rigid stable Higgs bundle (Vs, θs) to a
rigid stable connection C−1(Vs, θs).

The next point is to observe that the output here has nilpotent
p-curvature, so it allows us to produce what we hope to be all
rigid stable connections out of Higgs bundles.

Remark

Crucially, when picking a nice model we can assume θS is
nilpotent. Control over the residue characteristic allows us to
control the degree of nilpotence, so Ogus-Vologodsky can apply.
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Counting connections

Let ndR(X,L, r) to be the number of stable rigid flat
connections of rank r on X with determinant L. Similarly
define nDol(X,L, r). Let nnilpdR (X,L, r) denote the number which
are nilpotent.

We want nnilpdR (X,L, r) ≥ ndR(X,L, r). A corollary of the
previous result is the following, after taking a nice model XS.

Corollary

We have
nnilpdR (Xs,Ls, r) ≥ nDol(X

(p)
s ,L(p)

s , r).

To see this, apply C−1 to each item of the RHS. In the
Ogus-Vologodsky correspondence, it lands in MICp−1 and hence
has nilpotent p-curvature. Because we have an equivalence of
categories, it must be an injection.

32 / 41



Counting connections

Let ndR(X,L, r) to be the number of stable rigid flat
connections of rank r on X with determinant L. Similarly
define nDol(X,L, r). Let nnilpdR (X,L, r) denote the number which
are nilpotent.
We want nnilpdR (X,L, r) ≥ ndR(X,L, r). A corollary of the
previous result is the following, after taking a nice model XS.

Corollary

We have
nnilpdR (Xs,Ls, r) ≥ nDol(X

(p)
s ,L(p)

s , r).

To see this, apply C−1 to each item of the RHS. In the
Ogus-Vologodsky correspondence, it lands in MICp−1 and hence
has nilpotent p-curvature. Because we have an equivalence of
categories, it must be an injection.

33 / 41



Counting connections

Let ndR(X,L, r) to be the number of stable rigid flat
connections of rank r on X with determinant L. Similarly
define nDol(X,L, r). Let nnilpdR (X,L, r) denote the number which
are nilpotent.
We want nnilpdR (X,L, r) ≥ ndR(X,L, r). A corollary of the
previous result is the following, after taking a nice model XS.

Corollary

We have
nnilpdR (Xs,Ls, r) ≥ nDol(X

(p)
s ,L(p)

s , r).

To see this, apply C−1 to each item of the RHS. In the
Ogus-Vologodsky correspondence, it lands in MICp−1 and hence
has nilpotent p-curvature. Because we have an equivalence of
categories, it must be an injection.

34 / 41



Counting connections

From non-abelian Hodge theory, we’d expect nDol(X
(p)
s ,L(p)

s , r)
to be closely related to ndR(Xs,Ls, r).

Lemma

We have nDol(X
(p)
s ,L(p)

s , r) = ndR(Xs,Ls, r).

Proof.

First, show that taking Frobenius twists doesn’t affect
these numbers.

We reduce to nDol(Xs,Ls, r) = ndR(Xs,Ls, r).

For closed points s ∈ S, given we work with a nice model
XS both are equal to their respective numbers over C.

We have nDol(X,L, r) = ndR(X,L, r) by non-abelian Hodge
theory.
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Putting everything together

To summarize, what we now know is the following when the
residue characteristic of s is > D:

Using Ogus-Vologodsky and the theorem telling us how it
behaves on rigid stable Higgs bundles, we get

ndR(Xs,Ls, r) ≥ nnilpdR (Xs,Ls, r) ≥ nDol(X
(p)
s ,L(p)

s , r).

Further, nDol(X
(p)
s ,L(p)

s , r) = ndR(Xs,Ls, r).

The claimed result then follows for sufficiently large residue
characteristic. The most difficult content lies in the
construction of nice models, and also in using these to show
C−1 preserves rigidity.
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