
THE KLEIN QUARTIC

Most of this is based off of Noam Elkies’ article on the Klein quartic, “The Klein Quartic
in Number Theory”.

1. The Klein quartic as a Riemann surface

The Klein quartic X is a projective curve in P2(C) cut out by

x3y + y3z + z3x = 0.

This is a compact Riemann surface of genus three, and in fact has 168 automorphisms.

Let’s quickly think about these automorphisms. First, there are two obvious types of au-
tomorphisms:

• We can cyclically permute the variables, so there is a copy of Z/3Z in Aut(X)
generated by an element A.

• A bit less obvious: fix a primitive 7th root of unit ζ . Then applying

B =

ζ4 ζ2

ζ


to the vector (x, y, z) we obtain an order seven automorphism.

These first two generators satisfy B4 = ABA−1. Thus they generate a semidirect product
of Z/3Z and Z/7Z of order 21.

There is also a highly non-obvious involution on X, given by applying

C = − 1√
−7

 ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5

 .

Modulo the scaling factor, this is the Fourier transform on the space of odd functions
F7 → C.

The group of automorphisms generated by ⟨A,B,C⟩ is now actually quite large, as all the
49 elements

BaCBb

for a, b ∈ [0, 6] are in fact distinct automorphisms. In fact, this gives an explicit presen-
tation of the unique simple group of order 168, PSL2(F7).

This is the largest possible number of automorphisms for this genus, meeting the Hurwitz
bound.
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2 THE KLEIN QUARTIC

Proposition 1.1. Let X be a compact Riemann surface of genus g ≥ 2. Then
the group Aut(X) of orientation-preserving conformal automorphisms has order
at most

|Aut(X)| ≤ 84(g − 1).

Sketch. Take X and set G = Aut(X). The orbit space X/G has an induced complex
structure from X, which in fact makes X/G a Riemann surface. The map

X → X/G

is a branched covering, with finitely many ramification points (say k of them).

Let g′ be the genus of X/G. Riemann-Hurwitz tells us

2g − 2 = |G| ·

(
2g0 − 2 +

∑
i≤k

1− 1

ei

)
.

The ramification indices at a ramification point are the orders of the stabilizers of that
orbit. The number of preimages fi of a ramification point then satisfies eifi = |G| by
orbit-stabliizer.

We now need some casework. If g0 ≥ 2, then we get 2g − 2 ≥ 2|G| so |G| ≤ g − 1
and cannot be very large. In particular, the upper bound will want g0 = 0. Also, if we
have many ramification points (say ≥ 5) even if g0 = 0 then we again get a good bound
|G| ≤ 4(g − 1).

One can argue the least number of ramification points is 3 (χ cannot be negative, so if
k ≤ 2 there is no hope of making −2 +

∑
i≤k 1 − 1

ei
positive), and then minimizing

3− 1
e1
− 1

e2
− 1

e3
we see the minimum is at (2, 3, 7). The corresponding bound is

2g − 2 ≥ |G| ·
(

1

42

)
so 84(g − 1) ≥ |G|. □

A conceptual argument can also be given as follows. By uniformization, we can see X is
covered byH. The conformal maps onX are induced by orientation-preserving automor-
phisms of H, so we want to maximize these. By Gauss-Bonnet, we see from the fact that
there is no boundary and that the surface is hyperbolic that

Area(X) = −2πχ(X) = 4π(g − 1).

We imagine X as coming from folding up a subset ofH using the covering map, and that
this subset is tiled from a fundamental domain D by applying automorphisms on H. To
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get the most automorphisms, we want D to be as small as possible. If D is a triangle with
angles π/ei, then we wish to minimize

Area(D) = π

(
1−

∑ 1

ei

)
.

This is achieved for (2, 3, 7), giving

Area(X)/Area(D) ≤ 168(g − 1).

This overcounts by a factor of two, because on X some of the automorphisms can be
orientation-reversing. If we account for this, we get the actual bound.

In fact, this fact about maximality of automorphisms uniquely characterizes the Klein
quartic.

Theorem 1.2. There is a unique genus 3 Riemann surface X with 168 automor-
phisms. We can equivalently characterize such anX by it admitting a branched cover

X → P1

which is ramified at three points with indices 2,3, and 7.

2. As a modular curve

The previous criterion gives us an easy way to check if a curve is the Klein quartic overC.
However, in defining X we actually did so overQ.

Modular curves are constructed as quotients of the upper half plane H by congruence
subgroups. Namely, taking the usual action of linear fractional transformations

z 7→ az + b

cz + d

we obtain an action of SL2(Z) on H. A subgroup Γ ≤ PSL2(Z) is called a congruence
subgroup if it contains Γ(N) for someN , the subgroup

Γ(N) := {
(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), b, c ≡ 0 (mod N)}.

Or, more simply, the kernel of the surjective map

SL2(Z) → SL2(Z/NZ).

Wecan use the chinese remainder theorem to see themap is surjective, soSL2(Z)/Γ(N) ≃
SL2(Z/NZ) which easily lets us compute the index.
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Definition 2.1. The affine modular curveY(N) is the quotientH/Γ(N). The com-
pactified modular curve is

X(N) := H∗/Γ(N)

where we add the cuspsQ ∪∞ = P1(Q) to H.

Example 2.2. The curve X(1) isCP1.

Observe that Aut(X) is a simple group of order 168, so in particular it is isomorphic to
PSL2(F7). The previous discussion shows that

Γ(1)/Γ(7) ≃ SL2(F7).

Observing the matrices ±I induce the same automorphism, this shows that over C the
modular curve X(7) has an action by G = PSL2(F7).

Corollary 2.3. Over C, the Klein quartic is isomorphic to X(7) as a Riemann
surface.

Proof. We actually have several ways to do this at this point. It is easy to check that X(7)
has at least 168 distinct automorphism, so by our previous results we just need to show it
has genus 3.

The covering
X(7) → X(1) ≃ P1

is Galois, with Galois group G = PSL2(F7). Applying Riemann-Hurwitz,

χ(X(7)) = 168χ(P1)−
∑
p

(ep − 1)

where the sum is over the ramification points p ∈ X. Since the cover is Galois, the ramifi-
cation indices of preimages of a point inP1 are the same. Using the standard description
of a fundamental domain forX(1), the potential ramification points are [i], [ρ] (ρ is e2πi/3)
and [∞]. The ramification indices here are 2, 3, and 7 respectively, computed by the size
of stabilizer of the G-action at that point.

Note that just the ramification computation is enough to see we get X. □

In fact, this isomorphism even descends overQ when we use theQ-scheme x3y+ y3z +
z3x = 0 for X.
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Theorem 2.4. Over Q, the modular curve X(7) parameterizes elliptic curves with
levelN structure, i.e. an isomorphism

E[N ] ≃ Z/7Z× µ7

as Galois modules.

Remark 2.5. This is a special feature overQ that we need to think about the Galois
action. The Weil pairing identifies Λ2E[N ] ≃ µN , so we actually have many choices
of level structure. This is the one which is the simplest guess, and matches up with
the Klein quartic.

Theorem 2.6. OverQ, X(7) is isomorphic to x3y + y3z + z3x = 0.

The basic idea is that we can find some explicit weight 2 modular forms for Γ(7), or
functions f so that

f

(
aτ + b

cτ + d

)
= (cτ + d)2f(τ)

for matrices in Γ(7). Equivalently, f(τ)dτ is Γ(7)-invariant, so these will correspond to
sections in H0(X(7),Ω1) (or differential forms). In particular, we find three such global
sections which generate Ω1, which then defines a map

X(7) → P2.

The modular forms x(τ), y(τ) and z(τ) satisfy exactly the relation of the Klein quartic,
and moreover we can check this is an embedding. It turns out this strategy also descends
toQ.

Explicitly, these modular forms take the form∑
β∈Z[−1+

√
−7

2
]

Re(β)qββ̄/7

where q = e2πiτ and the sum runs over β congruent modulo
√
−7 to one of 1, 2, 4.

Remark 2.7. To really descend toQ we need to check the moduli problem matches.
To do this one can write down a generic elliptic curve attached to a non-cusp point
(x : y : z) onX, and then compute the Galois moduleE[7] for this curve and deduce
it is Z/7Z× µ7.

3. Heegner numbers

The Stark-Heegner theorem is the following result.
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Theorem 3.1. The only imaginary quadratic fieldsQ(
√
−D)whose rings of integers

are PIDs occur when

D = 3, 4, 7, 8, 11, 19, 43, 67, 163.

The basic idea of the argument is that the existence of such D implies the existence of a
special elliptic curve. This follows from the theory of complex multiplication, which I’ll
summarize briefly.

Definition 3.2. Let E/C be an elliptic curve. Then E has CM if the endomorphism
ring End(Z) is larger than Z.

Lemma 3.3. LetE/C be an elliptic curve. ThenEnd(E) ̸= Z if and only ifEnd0(E) =
K/Q is an imaginary quadratic field. In this case, End(E) = O ⊂ K is an order in
K .

Proof. We may write End(E) = {λ ∈ C : λ(Λ) ⊆ Λ}. Now assuming Λ = ω1Z⊕ ω2Z,
to have λ(Λ) ⊂ Λmeans that λω1 = aω1 + bω2 and λω2 = cω1 + dω2 for a, b, c, d ∈ Z.

Then if γ =

(
a b
c d

)
, using the regular action we have z = ω1/ω2 which satisfies

z =
λω1

λω2

= γ · z.

If λ ̸∈ Z, or E has CM, then b and c are nonzero, so Q(z) is an imaginary quadratic
field by using the (quadratic) relation z = γ · z. From the realizations of End(E) and
End0(E) in terms of Λ, we see End0(E) = Q(z) = K is an imaginary quadratic field.
It is clear End(E) needs to be an order inK , since it is a ring which is a full and finitely
generated Z-submodule ofK . □

Elliptic curves with CM can always be defined over Q̄, evenQab.

In fact, the set of isomorphism classes over Q̄ of elliptic curves with CM by a particular
orderO is the same as the class group of that order.

Theorem 3.4. LetE/C be an elliptic curve withCMbyOK . Then [Q(j(E)) : Q] ≤
|Cl(OK)|.
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Proof. Since E has CM we can define it over Q̄. Write down the Weierstrass form of E,
and apply any automorphism σ of Q̄ and note

j(Eσ) = j(E)σ.

This also induces an equivalence End(E) ≃ End(Eσ), so we again get an elliptic curve
with CM. But there are at most |Cl(OK)| such isomorphism classes, so j(E)σ can take on
at most |Cl(OK)| different values. This implies it is algebraic and also bounds the degree
ofQ(j(E)). □

In particular, the relevant fact for us is that we can always construct an elliptic curve
with CM byOK , and in the situation thatK has class number one then there is a unique
such curve up to Q̄-isomorphism and j(E) ∈ Q. In fact j(E) must be an integer, as all
j-invariants of CM elliptic curves are algebraic integers.

Idea. Reduce the class number one problem to finding points of a modular curve with
integral j invariant.

We will need more conditions to actually make the number of such points finite.

Consider an imaginary quadratic field K = Q(
√
−D), and assume it has class number

one. Then ifD > 28, the prime 7 will actually remain prime. Otherwise, there is a prime
(α) above 7 (it is principal by the class number assumption) andN(α) = 7. But whenD
is large there cannot be a

√
−D or 1+

√
−D

2
component, which forces α to be an integer

which is impossible given the norm condition.

Thus, we may assume 7 is inert.

Lemma 3.5. IfD > 28 andK = Q(
√
−D) has class number one, there is an elliptic

curve over Q with CM by OK (which is unique up to Q̄-isomorphism). The action
ofOK on E[7] gives it the structure of a 1-dimensional vector space overF49 (which
respects the GQ-action).

Proof. By the class number one condition, we know theremust exist a unique isomorphism
class over Q̄ of elliptic curves with CM by OK . Moreover, the j-invariant is an integer,
so there is an elliptic curve over Q which lands in this isomorphism class over Q̄ (you
can write a curve in Weierstrass form from the specified j-invariant, which completely
classifies the isomorphism class over Q̄).

For the second statement, on E[7] the OK-action by endomorphisms becomes an action
of OK/7 ≃ F49 (note that 7 in End(E) actually corresponds to the multiplication by 7
endomorphism). But this is now a field, giving it a vector space structure. These endo-
morphisms must also respect the Galois action. □
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This extra structure on E[7] is exactly what we need, and where the Klein quartic will
come into play. The Klein quartic gives us explicit equations to describe X(7). We will
need a variant of X(7) to capture this slightly different version of level structure.

Definition 3.6. The 2-Sylow subgroup ofPSL2(F7) is isomorphic to the 8-element
dihedral group D8, so we will denote it by this.

Let X denote the Klein quartic, and set Xns(7) := X/D8.

Theorem 3.7. The curveXns(7) is defined overQ and parameterizes elliptic curves
such that the Galois action E[7] is contained in the normalizer of a nonsplit Cartan
in GL2(F7). A non-split Cartan subgroup is a subgroup of the form

H =

{(
a ϵb
b a

)
: a2 − ϵb2 ̸= 0

}
where ϵ ∈ F×

7 is a nonsquare. Mapping toPGL2(F7), this gives you a dihedral group
(which is the relation).

To set up the next part of the argument, we will consider the following diagram.

X X(7)

X/S4

X/D8 Xns(7)

X/PSL2(F7) X(1) = P1

≃

≃

≃

On the right hand side, the maps forget level structure with the map toX(1) being the j-
invariant. The idea is that we will produce points of Xn(7) with integral j-invariant, and
then translate across this diagram to turn this into a diophantine equation with finitely
many solutions.

The easiest step is to write down the map j : X → X(1) ≃ P1 in terms of the coordinates
x, y, z as a rational function of degree 168 (there is a simpler way to express it in terms of
certain invariant polynomials coming from the representation theory of PSL2(F7)).

Our goal is to give an explicit rational parameter ϕ for X/D8 along with the j map, so
that we can write j in terms of this parameter and ask for rational solutions so j ∈ Z.
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This is done by first describing the genus zero curve X/S4 as rationally parameterized by
an explicit coordinate ψ on X. The j-function can also be explicitly given, describing the
map X/S4 → X/PSL2(F7) ≃ X(1) = P1. To do this one writes down the j function
onX/PSL2(F7) as a degree 168 rational function, and then write j as a rational function
of the coordinate ψ on X/S4.

Then, we can describeX/D8 as a degree 3 cover ofX/S4 (it will in fact be genus 0 again).
This gives it a coordinate ϕ where we can write ψ ∈ Q(ϕ). In total, we obtain in all its
horrible glory that

j = 123 + 562
(ϕ− 3)(2ϕ4 − 14ϕ3 + 21ϕ2 + 28ϕ+ 7)P 2(ϕ)

(ϕ3 − 7ϕ2 + 7ϕ+ 7)7

where P (ϕ) = (ϕ4 − 14ϕ2 + 56ϕ+ 21)(ϕ4 − 7ϕ3 + 14ϕ2 − 7ϕ+ 7).

Theorem 3.8. The only imaginary quadratic fieldsQ(
√
−D)whose rings of integers

are PIDs occur when

D = 3, 4, 7, 8, 11, 19, 43, 67, 163.

Proof. Aswe have seen, onceD > 28wemay assume 7 is inert and then produce an elliptic
curve E with CM by OK defined over Q with integer j-invariant. Moreover, we found
that the Galois action on E[7] is compatible with a F49-vector space structure, which
restricts us to F49-linear maps. This means that E gives a rational point of Xns(7) (in
particular a Z[1/7]-point which does not give cusps for p ̸= 7) such that the j-invariant
is an integer.

Now we can use the massive formula from earlier to solve the problem. Put ϕ = m
n
with

gcd one. Writing

j =
A(m,n)

B(m,n)

we find that gcd(A(m,n), B(m,n))|567 given (m,n) = 1. In particular,

(m3 − 7m2n+ 7mn2 + 7n3)|56.
It is now possible to find all possible solutions (m,n). Essentially, m/n needs to be a
good rational approximation on the order of n3 of a root α of ϕ3 − 7ϕ2 + 7ϕ + 7, as
m3 − 7m2n+ 7mn2 + 7n3 is forced to be small. Any bound

|α−m/n| > Cαn
−C′

α

where C ′
α < 3 suffices, and many exist (in this case 0.099 and 7/3). □
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