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1. The stack XSyn

At this point, we’ve defined a stack

t : XNyg → A1/Gm

which sees all of the cohomology theories we want except for étale cohomology.

The starting point is to recall the statement of the étale comparison.

Theorem 1.1. Let X = Spf R be an affine p-adic formal scheme over a perfectoid
ring A/d corresponding to a perfect prism (A, d). Then

RΓét(Xη,Zp) ≃ ∆X/A[1/d]
φ=1.

The idea of the proof is to use descent to reduce to the case where X is perfectoid, where
after tilting the claim follows from

RΓét(SpecR
♭,Zp) ≃ fib(φ− 1 : W(R♭) → W(R♭)),

which is due to the Artin-Schreier sequence.

In fact, there is a better version with coefficients on perfectoids.

Theorem 1.2. Let X = Spf R be a perfectoid ring with corresponding to a perfect
prism (A, d). Then

RΓét(Xη,Zp(n)) ≃ [ φ−1(dn)A A
φ/dn−1

]

1
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The fact that φ−1(dn) appears immediately lets us realize that if we want to do this with
general coefficients, we are going to need Nygaard filtered prismatic cohomology.

To properly do this, we need Breuil-Kisin twists.

Definition 1.3. The Breuil-Kisin twist O{1} on ZNyg
p is defined as

π∗O∆{1} ⊗ t∗O(−1)

where O(−1) is the usual line bundle on A1/Gm.

Note that O∆{−1} can be constructed geometrically, as H2
∆(P

1
Zp
). Otherwise, the

idea is to lift I∆/I
2
∆ on the Hodge-Tate stack to a prismatic crystal. On a transversal

prism, if we put
Ir = I⊗A φ∗I⊗ φ2∗I⊗ . . .⊗ φ(r−1)∗I

then O∆{1}(A, I) is given by the limit of

· · · ↠ I3/I
2
3 ↠ I2/I

2
2 ↠ I/I2.

In particular, it lifts I/I2 and φ∗A{1} ≃ I−1 ⊗ A{1}.

This defines O{n} in general on XNyg via pullback. We now consider the perfectoid case.

Proposition 1.4. Assume R is perfectoid, and pick a trivialization Ainf(R
♭){1} ≃

Ainf(R
♭) and pick a generator d of I. Then

j∗HT : RΓ(RNyg,O{n}) → RΓ(X∆,O{n})
identifies with

φ{n} = φ/dn : FilnNyg∆R → ∆R

and j∗dR identifies with
FilnNyg∆R ↪→ ∆R.

Remark 1.5. It is important here that really j∗HTO{1} = j∗dRO{1} = O∆{1} so
that the maps have the correct target. Clearly j∗dRO{1} = O∆{1}: π ◦ jdR = id,
and t ◦ jdR factors over Gm/Gm so O(−1) trivializes. For j∗HT, we get

F ∗O∆
Zp
{1} ⊗ j∗HTt

∗O(−1).

The latter factor becomes I∆, and the first becomes I−1
∆ ⊗ O∆{1} (think about the

heuristic definition). Thus we get the correct result.

In particular, for a perfectoid X we get

RΓét(Xη,Zp(n)) ≃ fib(φ{n} − 1 : RΓ(XNyg,O{n}) → RΓ(X∆,O{n}).
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Thus in general, there is a map

fib(φ{n} − 1 : RΓ(XNyg,O{n}) → RΓ(X∆,O{n}) → RΓét(Xη,Zp(n))

by arc descent of étale cohomology. The left side is not an arc sheaf, so this is not an
equivalence.

These maps really arose as j∗HT and j∗dR. However, it is also quite important that we have
a canonical identification between j∗HT and j∗dR in order for what we did above to make
any sense.

We then introduce a new stack to make this identification, called XSyn.

Definition 1.6. The stack XSyn is defined as the pushout diagram

X∆ ⊔ X∆ XNyg

X∆ XSyn

can

jHT⊔jdR

j∆

All horizontal maps are immersions, so this is also a pullback diagram.

Lemma 1.7. We have

QCoh(XSyn) ≃ eq( QCoh(XNyg) QCoh(X∆)
j∗HT

j∗dR

),

and the analogous statement for cohomology also holds.

Proof. After applying QCoh we obtain a pullback diagram

QCoh(XSyn) QCoh(X∆)

QCoh(XNyg) QCoh(X∆)× QCoh(X∆)

j∗∆

∆

j∗HT⊔j
∗
dR

from which it follows formally that QCoh(XSyn) is the equalizer (this is the general cate-
gorical recipe for getting an equalizer out of a product and a pullback square).

The same holds for cohomology. □

As a result of this description, note that we get O{1} on the syntomification. If R is
perfectoid, we can describe QCoh(RSyn) very explicitly.
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Example 1.8. LetR be a perfectoid ring, and let (∆R, I) be the corresponding perfect
prism. Picking a generator d, we have seen

RNyg = Spf ∆R⟨u, t⟩/(ut− φ−1(d))/Gm.

From this description one can think of an object in QCoh(RNyg) as a diagram of
∆R-complexes

. . . M i+1 M i M i−1 . . .
t

u

t

u

t

u

t

u

where ut = tu = φ−1(d): this is simply interpreting sheaves on this stack as graded
modules over ∆R⟨u, t⟩/(ut− φ−1(d)).

Put M−∞ for the completed colimit along the t maps and M∞ for the completed
colimit along the u maps. If M is a perfect complex, the maps M0 → M±∞ are
φ−1(d)-isogenies.

We have j∗dRM = M−∞ and j∗HTM = φ∗M∞. Thus objects in QCoh(RSyn) can be
described the same way, except that we add an identification

τ : φ∗M∞ ≃ M−∞.

It is useful to also see how QCoh(RSyn) can be described for a qrsp ring.

Proposition 1.9. Let R be a qrsp ring. Then the category QCoh(RSyn) is equivalent
to the category of triples

(M,Fil•M, φ̃M)

where M ∈ D∧
(p,I)(∆R), Fil•M ∈ DF∧

(p,I)(Fil
•
Nyg∆R) is a filtration on M , and

φ̃M : Fil•M → IZ∆R ⊗M

is linear over the filtered Frobenius Fil•Nyg∆R → IZ∆R and induces an isomorphism

φM : Fil•M ⊗Fil•Nyg∆R
IZ∆R ≃ I•M

in DF∧
(p,I)(I

Z∆R) ≃ D∧
(p,I)(∆R).

Proof. Recall that we showed that RNyg = R(Fil•Nyg∆R). This means sheaves can be
viewed DF∧(Fil•Nyg∆R).

The de Rham open immersion is given by the cartesian square
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R∆ Gm/Gm

R(Fil•Nyg∆R) A1/Gm.

jdR

t

The Hodge-Tate open immersion is given by taking the filtered Frobenius⊕
i∈Z

FiliNyg∆Rt
−i →

⊕
i∈Z

Ii∆Rt
−i,

which induces

jHT : R∆ ≃ Spf

(⊕
i∈Z

Ii∆Rt
−i

)
/Gm → R(Fil•Nyg∆R).

On sheaves, if we view them as objects inDF∧(Fil•Nyg∆R), it is also possible to write down
j∗dR and j∗HT explicitly. We use the equivalence

DF∧
(p,I)(I

Z∆R) ≃ D∧
(p,I)(∆R),

given by the equivalence of stacks we used to define jHT.

Under this, the de Rham pullback of Fil•M gets sent to IZM (after using the equivalence
R∆ ≃ Spf

(⊕
i∈Z I

i∆Rt
−i
)
/Gm) and the Hodge-Tate pullback is Fil•M⊗Fil•Nyg∆R

IZ∆R.

We can now directly give functors in both directions. Given M ∈ QCoh(RSyn), we send

M 7→ (M |R∆ ,M |RNyg , τ)

where τ is the identification between the de Rham and Hodge-Tate pullbacks.

Conversely, Fil•M reconstructs the gauge E|RNyg , and φM gives the desired data to up-
grade this to an F -gauge. □

2. Etale realization

There are two main ways to construct the étale realization. I will focus on the method
that passes through prismatic F -crystals in perfect complexes.

Lemma 2.1 (Remark 6.3.4). Restriction to X∆ gives a functor

Perf(XSyn) → Perfφ(X∆,O∆).
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Proof. The perfectness of the restriction is clear, so the additional claim is that the resulting
perfect complex E on X∆ comes equipped with a natural identification

φ∗E [1/I∆] ≃ E [1/I∆].
Consider the maps

φ∗j∗dR(E) φ∗π∗E j∗HT(E)

associated to E ∈ Perf(XNyg). The left map is defined by applying φ∗ to the canonical
map

π∗E → j∗dR(E).
This is obtained from viewing jdR as a map of stacks over X∆, i.e. that it fits into a com-
mutative diagram

X∆ XNyg

X∆

id

jdR

π

The right map is obtained via adjunction to the analogous map φ∗π∗E → j∗HT(E). This
comes from the analogous diagram

X∆ XNyg

X∆

φ

jHT

π

Now we use adjunction to see that

Hom(φ∗π∗E , j∗HT(E)) ≃ Hom(π∗E , φ∗j
∗
HT(E)).

But since (π ◦ jHT) = φ, this is the same as a map

π∗E → π∗(jHT)∗j
∗
HTE .

There is always a canonical map

E → (jHT)∗j
∗
HTE

via the unit of the adjunction.

If we show these are I∆-isogenies we are done, since the F -gauge structure identifies
j∗dR(E) and j∗HT(E).

By quasisyntomic descent of perfect complexes, we can check this key claim locally on
quasiregular semiperfectoid rings R. The idea is then that if E is perfect it has Hodge-
Tate weights in [a, b] where a ≥ b, and then one can show that the map φM (using the
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description of F -gauges on a qrsp) has image contained in IaM and the image contains
IbM . This implies that it has finite height. □

We denote this functor by

(−)|X∆ : Perf(XSyn) → Perfφ(X∆,O∆).

There is then an obvious functor

Perfφ(X∆,O∆) → Perf(X∆,O∆[1/I∆]
∧)φ=1.

We will see the target category is equivalent to the category of derived lisse sheaves on Xη .
To give the equivalence, we first note the following results:

Proposition 2.2. LetD(b)
lisse(Xη,Zp) be the category of bounded complexes inDét(Xη,Zp)

which are derived p-complete and each cohomology sheaf is lisse (after reduction
mod p).

Then X 7→ D
(b)
lisse(Xη,Zp) is a quasisyntomic sheaf, and for R qrsp we have

D
(b)
lisse(Spf Rη,Zp) ≃ D

(b)
lisse(Spf R

perf
η ,Zp)

where Rperf is the perfectoidization. Thus

D
(b)
lisse(Spf Xη,Zp) ≃ lim

Spf R→X
D

(b)
lisse(Spf Rη,Zp)

over perfectoid rings R.

Remark 2.3.

The following result builds off of Katz’s Riemann-Hilbert correspondence.

Theorem 2.4 (Katz). Let SpecR/ SpecFp be a scheme. Then

Db
lisse(SpecR,Zp) ≃ Perf(W(R))φ=1.

The equivalence sends L 7→ L⊗W(R), and the inverse is taking φ fixed points.

Theorem 2.5 (Bhatt-Scholze). LetX be a quasisyntomic p-adic formal scheme. Then

Perf(X∆,O∆[1/I∆]
∧)φ=1 ≃ D

(b)
lisse(Xη,Zp).
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Sketch. The essential idea is that if X is perfectoid, then the claim is

Perf(∆R[1/I∆]
∧)φ=1 ≃ D

(b)
lisse(X

♭
η,Zp) ≃ D

(b)
lisse(Xη,Zp).

The second equivalence is tilting. The first equivalence follows from the fact that R cor-
responds to a perfect prism (W(R♭), (d)) where R♭ is perfect so

∆R[1/I∆]
∧ = W(R♭[1/d])

and a theorem of Katz says

Perf(W(R♭[1/d]∧))φ=1 ≃ D
(b)
lisse(SpecR

♭[1/d],Zp) ≃ D
(b)
lisse(X

♭
η,Zp).

Recall that for an affinoid adic space Spa(A,A+) that finite étale covers are the same as
finite étale covers of A.

One can reduce the general claim to the perfectoid case. To make the reduction for
Perf(X∆,O∆[1/I∆]

∧)φ=1, the main claim is that for a prism (A, I) we have

Perf(A[1/I]∧)φ=1 ≃ Perf(Aperf [1/I]
∧)φ=1.

Once this is shown

Perf(X∆,O∆[1/I∆]
∧)φ=1 ≃ lim

(Aperf ,I)
Perf(Aperf [1/I]

∧)φ=1

over perfect prisms (Aperf , I) with a map Spf Aperf/I → X. Equivalently, we take the
limit over perfectoid rings mapping toX, so by the previous proposition the claim follows.

By derived p-completeness, you can check this modulo p. We can assume the prism has I
principal, and in this case the claim is that for an Fp-algebra B an element t for which B
is derived t-complete that

Perf(B[1/t])φ=1 ≃ Perf(Bperf [1/t])
φ=1 ≃ Perf(B∧

perf [1/t])
φ=1

where the completion is t-adic. The first is an equivalence by Katz’s Riemann-Hilbert
equivalence and topological invariance of the étale site. The second functor is fully faithful
as perfect complexes are automatically derived t-complete, and it is essentially surjective
due to Katz’s Riemann-Hilbert equivalence and Elkik approximation, which says lisse
sheaves on SpecB∧

perf [1/t] are pulled back from lisse sheaves on Bperf [1/t]. □

This produces an étale realization functor as desired.

3. Crystalline Galois representations

We will now introduce reflexive sheaves on OSyn
K .

Proposition 3.1. Let (A, I) = (W(k)[[x]],E(x)) be a Breuil-Kisin prism for OK .
Then the map

πW(k)[[u]] : R(I•A) → ONyg
K
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is locally surjective in the flat topology.

Here, we (p, I)-adically complete the Rees algebra.

Proof. Let (A, I) denote the Breuil-Kisin prism we chose. Then picking a generator d =
(u− p), we have

Rees(I•A) =
W(k)[[x]]⟨u, t⟩
ut− E(x)

and the proposed stack is the quotient by Gm where t has degree one and u has degree
−1.

The functor of points of R(I•A) assigns to a p-nilpotent ring S a map f : A → S killing
some power of I, a line bundle L ∈ Pic(S), and a factorization

I⊗A S L Su t

of the canonical map.

We get the diagram

0 I⊗A G#
a I⊗A W I⊗A F∗W 0

0 V(L)# Mu I⊗A F∗W 0

0 G#
a W F∗W 0

u#

t# du,t

F

of W-modules over S where the composite downward maps are the canonical maps.

This diagram gives a point of ZNyg
p (S), and the middle column gives a map

OK = A/I → RΓ(Spf S,W/Mu)

so this further gives a map
R(I•A) → ONyg

K .

We now claim this map is a flat cover. Let A∞ denote the perfection of the Breuil-Kisin
prism. Then

A → A∞

is a (p, I)-complete quasisyntomic cover, and hence so is R → R∞. Then we have a
diagram
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R(I•A∞) RNyg
∞

R(I•A) RNyg

∼

where the vertical maps are fpqc covers. In particular, the map is a local isomorphism the
fpqc topology. □

As a consequence of this proposition, it makes sense to make the following definition.

Definition 3.2. A coherent sheaf on OSyn
K is a sheaf whose pullback to R(I•A) is

coherent for a Breuil-Kisin prism (A, I) corresponding to OK .

We also now recall the notion of a reflexive module from algebraic geometry.

Definition 3.3. LetANoetherian regular integral domain. A moduleM ∈ Coh(A)
is reflexive if the canonical map

M → M∨∨

is an isomorphism.

Following this definition, we define a reflexive sheaf on OSyn
K as follows:

Definition 3.4. A reflexive sheaf on OSyn
K is a sheaf in Coh(OSyn

K ) so that after
pullback along the cover

Spf Rees(I•A)/Gm → ONyg
K → OSyn

K

the resulting graded module is reflexive as a module over the Noetherian regular
integral domain Rees(I•A).

Call the subcategory of reflexive sheaves Refl(OSyn
K ).

We will aim to show this is equivalent to LoccrisZp
(GalK) via the étale realization.

For the purpose of the proof, it will be convenient to have several equivalent notions of
reflexive at hand.

Proposition 3.5. The following are equivalent:
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• A coherent sheaf E ∈ Coh(OSyn
K ) is isomorphic to its O-linear double dual

via the canonical map.

• E ∈ Refl(OSyn
K ).

• After pullback to OSyn
Cp

E ∈ Refl(OSyn
Cp

), defined as M ∈ Perf(OSyn
Cp

) such
thatM |O∆

Cp
is locally free andM |ONyg

Cp

∈ Perf(ONyg
Cp

) ≃ Perfgr(Ainf⟨u, t⟩/(ut−
φ−1(ξ)) is (u, t)-regular (i.e. Kos(M ;u, t) is discrete).

Proof. Clearly (1) implies (2). To see (2) implies (1), the map E → E∨∨ always exists in
Coh(OSyn

K ), so we can test if it is an equivalence of coherent sheaves after pullback along
an fpqc cover. Item (2) says that after pullback to the cover Spf Rees(I•A)/Gm this
morphism becomes an equivalence.

The equivalence of (2) and (3) is more nontrivial. Observe there is a factorization

ONyg
Cp

→ R(I•A) → ONyg
K .

Both maps are faithfully flat.

Stating this in terms of rings, it suffices to show that a module is reflexive over Rees(I•A)
(condition (2)) if and only if the pullback M to Rees(Fil•NygAinf) has the property that
M [1/u],M [1/t] are locally free and Kos(M ;u, t) is discrete (condition (3)).

We will use the following lemma to do this:

Lemma 3.6. Let (R,m) be a three dimensional regular local ring and let (x, y) be a
regular sequence of length 2. Let M be a finitely generated module over R. Then the
following are equivalent:

• M is reflexive.

• M has M [1/x],M [1/y] free and Kos(M ;x, y) is discrete.

Proof. Suppose M has M [1/x],M [1/y] free and Kos(M ;x, y) is discrete. Then it follows
that M |SpecR\V(x,y) is a vector bundle, and discreteness of the Koszul complex means that
M is ∗-extended from this restriction. The hypotheses of Stack Project 0E9I are satisfied,
as the depth of Mp for p ∈ V(x, y) is ≥ 2. Indeed for a Noetherian local ring, M -Koszul
regularity and M -regularity are the same, so this says (x, y) is a regular sequence giving a
lower bound on the depth (when x, y are in the maximal ideal of OX,x we can use these,
i.e. when p ∈ V(x, y)). Thus M is reflexive, as ∗-extensions from open subschemes whose
complement has codimension ≥ 2 are reflexive.

Conversely, supposeM is reflexive. ThenM [1/x] andM [1/y] are reflexive on Noetherian
regular schemes of dimension≤ 2, hence by Stacks Project 0B3N they are locally free. □
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The hypotheses apply to R(I•A). Thus we learn that if (2) holds, then (3) must hold after
pullback.

Conversely, suppose (3) holds and let M denote the module over Rees(I•A) obtained via
pullback. Then by faithfully flat descent for locally free sheaves, M [1/u] and M [1/t] are
locally free (the maps O∆

Cp
→ Spf A → O∆

K are also faithfully flat).

As for Kos(M ;u, t) we know its pullback along a faithfully flat map is discrete, so the
second condition of the lemma is also satisfied. Indeed, having tor-amplitude in [a, b] is
fpqc local. □

We now will make an additional study of Refl(OSyn
Cp

) – we will need this to show

(−)|X∆ : Refl(OSyn
K ) → Vectφ(X∆,O∆)

is an equivalence.

The first key result is the following.

Proposition 3.7. There is an equivalence of categories

(−)|X∆ : Refl(OSyn
Cp

) ≃ Vectφ(Ainf).

The latter category are usually called Breuil-Kisin-Fargues modules.

Proof. Let (Ainf , ξ) be the perfect prism for OCp . It suffices to prove a version of this for
the Nygaard stack and then identify the Hodge-Tate and de Rham pullbacks. In particular,
we will want to show that the category Isog(Ainf , ξ) of triples

(M,N, τ)

consisting of M,N ∈ Vect(Ainf) and an isomorphism τ : M [1/ξ] ≃ N [1/ξ] is equiva-
lent to the category

Reflgr(A⟨u, t⟩/(ut− ξ))

of modules E so that E[1/u],E[1/t] are locally free over Ainf [u, u
−1] and Ainf [t, t

−1]
respectively and E is (u, t)-regular.

The functor
(−)|O∆

Cp
: Reflgr(A⟨u, t⟩/(ut− ξ) → Isog(Ainf , ξ)

sends E to the triple
(M(E), N(E), τ)

where M(E) := E[1/u]deg 0 and N(E) := E[1/t]deg 0, equipped with the natural corre-
spondence

M(E) Edeg 0 N(E)u∞ t∞
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which induces the isogeny τ by perfectness of E.

Now we show this functor has an inverse F , given by equipping objects in Isog(Ainf , ξ)
with a saturated Nygaardian filtration. Given (M,N, τ), set

Fil•N := ξ•M ∩N

where the intersection uses the identification τ : M [1/ξ] ≃ N [1/ξ] to view M as em-
bedded in N [1/ξ]. Then we set

F (M,N, τ) := Rees(Fil•N).

At the moment, it is unclear why this has the desired properties.

For local freeness of Rees(Fil•N)[1/u] and Rees(Fil•N)[1/t], we just need to use that
FiliN = ξiM for i ≫ 0 and FiliN = N for i ≪ 0. Applying the Rees dictionary
implies these identify with M [u, u−1] and N [t, t−1] as desired.

For Koszul regularity, since Fil•N is an honest filtration so t acts injectively. To get (t, u)
regularity, we just need to check that u acts injectively on Rees(Fil•N)/t. This follows
from the fact that if x ∈ FiliN with ξ · x ∈ Fili+1N then x ∈ Fili+1N . Using ut =
φ−1(ξ), it follows that the action of u is injective onRees(Fil•N)/t and thusF (M,N, τ)
is Koszul regular for (u, t). We omit verification that this module is perfect. This is where
the valuation ring property of OCp is used to verify that the resulting object is finitely
presented.

To see that F and (−)|O∆
Cp

are mutually inverse equivalences, we show compositions in
both directions give the identity. It’s obvious that given (M,N, τ) thatRees(Fil•N)|O∆

Cp
=

(M,N, τ). The non-obvious direction is that F ◦ (−)|O∆
Cp

is the identity. Let E ∈
Perfgr(A⟨u, t⟩/(ut − φ−1(ξ))). By perfectness it is derived (u, t)-complete automati-
cally, so (u, t)-regularity implies E is discrete and u, t act injectively on E.

Now let us consider the triple (M,N, τ) associated to E. We want to show that

Rees(ξ•M ∩N) = Rees(Edeg=−•),

as the latter recovers E.

The fact that E is t-regular implies that Edeg=−• is an honest filtration on the locally free
Ainf-module N . Degree shifting, we only need to verify that Edeg=0 = M ∩ N . Clearly
there is an inclusion

Edeg=0 ↪→ M ∩N.

Conversely, anyx ∈ M∩N gives a section ofESpecA⟨u,t⟩/(ut−ξ)−V(u,t), which by regularity
is the same as a global section. This is again Stacks Project 0E9I. □

To show the main result, we will to construct an inverse to (−)|O∆
K

. In the perfectoid case
we see how to do this; the idea will be to study base changes to qrsp rings to specify an
inverse using quasisyntomic descent.
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Definition 3.8. Let R be a qrsp ring and let M be a prismatic F -crystal in finitely
presented ∆R-modules. A Nygaardian filtration is a filtrationFil•M in (p, I)-complete
modules such that the canonical map

M → φ∗M ⊂ φ∗M [1/I] ≃ M [1/I]

carries FiliM into IiM for all i ∈ Z.

We say a Nygaardian filtration is saturated if it is the maximal such filtration (it is the
preimage of IiM under this map).

Clearly there is a unique saturated Nygaardian filtration on a prismatic F -crystal.

Lemma 3.9. LetE ∈ Perf(OSyn
Cp

), and letR be a p-torsionfree qrspOCp-algebra. For
the base change ER ∈ Perf(RSyn), the filtration Fil•E is the saturated Nygaardian
filtration.

Sketch. To E, we can associate (M(E),Fil•M(E), φ̃). To ER, we associate the (p, I)-
completed base change

(M(ER),Fil
•M(ER), φ̃).

To prove the claim, we need to show Fil• is an honest filtration (i.e. the maps Fili+1 →
Fili are injective), and that FiliM(ER) is obtained as the φ̃ preimage of the I-adic filtra-
tion.

Fact. N = gr•FilM(E) has bounded p-torsion, and so does N [1/u]/N .

Since Fil•M(E) is saturated we have Fil−iM(E) = M(E) for i ≫ 0 and the same
will hold after base change. For the honest filtration claim, we’ll just need to check
gr•FilM(ER) is coconnective: if Fili+1 → Fili had some kernel, since the gri are defined
as the cones of these morphisms we’ll get a non-coconnective cone.

Then
gr•FilM(ER) = gr•FilM(E)⊗̂L

gr•NygAinf
gr•Nyg∆R

Since gr•FilM(E) is discrete and has bounded p-power torsion and we are making a p-
completely flat base change, we get coconnectivity.

For the second item, we saw

Fil−iM(ER) = M(ER)

for i ≫ 0. So we just want to know

φ̃ : gr•FilM(ER) → gr•IZM(ER)

is injective. The F -gauge structure means

gr•IZM(ER) ≃ gr•FilM(ER)[1/u],
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so putting NR = gr•FilM(E) we see we want to know NR[1/u]/NR is coconnective. But
this is a p-completed base change of N [1/u]/N along a p-completely flat map, and this is
discrete with bounded p-power torsion. □

With this in place, we can prove the main result.

Theorem 3.10. There is an equivalence of categories

(−)|O∆
K
: Refl(OSyn

K ) → Vectφ((OK)∆,O∆).

Proof. We show this by constructing an inverse functor. Take the quasisyntomic cover

OCp → OK

and write R• for the p-complete Čech nerve.

Now let Ci ⊂ Perf((Ri)Syn) be the subcategory of prismatic F -gauges with the following
conditions:

• The underlying prismatic crystal is a vector bundle.

• The filtration after restricting to (Ri)Nyg is a saturated Nygaardian filtration on
the underlying prismatic F -crystal.

• The previous two items hold true after base change along any map Ri → Rj in
the cosimplicial ring R•.

There is then a natural functor

lim
∆

Ci → lim
∆

Perf((Ri)Syn) ≃ Perf(OSyn
K ).

This is termwise fully faithful by construction, so it is fully faithful.

We claim that lim Ci ≃ Vectφ((OK)∆,O∆). Indeed, restricting to the associated pris-
matic F -crystal gives a functor

lim
∆

Ci → lim
∆

Vectφ(∆Ri) ≃ Vectφ((OK)∆,O∆).

Each functor in the limit is fully faithful, as the saturated Nygaardian filtration is de-
termined by the underlying prismatic F -crystal and preserved by maps between them.
Moreover we have already seen that for the R0 = OCp we get an equivalence, so the lim-
iting functor is an equivalence. Here we are using that on R0 = Ainf , F -gauges whose
underlying prismatic crystal is a vector bundle equipped with a saturated Nygaardian fil-
tration are equivalent to Refl(OSyn

Cp
). Indeed, the inverse functor

Vectφ(Ainf) → Refl(OCp)
Syn

is literally equipping a prismatic F -crystal with a saturated Nygaardian filtration.
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This then defines a fully faithful functor

Vectφ((OK)∆,O∆) → Refl(OSyn
K ) ⊂ Perf(OSyn

K )

which is quasi-inverse to restriction to O∆
K by construction. □

Corollary 3.11. We have Refl(OSyn
K ) ≃ LoccrisZp

(GalK) via the étale realization.

Proof. This follows by the theorem of Bhatt-Scholze thatVectφ((OK)∆,O∆) ≃ LoccrisZp
(GalK)

via the étale realization functor. Both notions of étale realization are clearly compatible
by construction. □

Another corollary you can derive from this is the following:

Corollary 3.12. LetE ∈ Perf(OK)
Syn). After inverting p, every cohomology sheaf

of Tét(E)[1/p] is crystalline.

This requires some understanding of the kernel of the étale realization, so the proof is
omitted.
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