
DERIVED PRISMATIC COHOMOLOGY

SPEAKER: DYLAN PENTLAND

1. Failure with singularities

So far, we have seen prismatic cohomology only on smooth p-adic formal schemes.

This assumption is essential! For example, in the proof of the Hodge-Tate compari-

son, even in characteristic p the étale localization step to a polynomial algebra was

essential. You cannot ensure that the Frobenius on A/p is flat to get the untwisting

via base change of prisms unless we do the localization to a polynomial algebra first.

So, we see that for the methods of the argument the smoothness was important. This

does still not eliminate the possibility that some results could hold outside of the

smooth case. However, even with mild singularities we cannot have all comparison

theorems hold as the following example demonstrates.

Example 1.1. The issue can already be seen in crystalline cohomology. Consider

a proper lci Fp-scheme X, here specifically a cuspidal cubic.

We’ll run a hypothetical calculation assuming that all comparison results hold

past the smooth case. We see

RΓ∆(X/W(Fp))⊗L
W Fp

is the same as a Frobenius twist of RΓcris(X/Fp). Note that this tensor product

is underived, as the complex is W-flat.

This is fine, but we’ll run into trouble with the Hodge-Tate comparison now. The

Hodge-Tate comparison would have us identify this with the de Rham complex

when we take Hi
and twist. But in this particular example, H2

is actually infin-
itely generated over Fp by a result of Bhatt. This will not be the case for Ω2

,

which you can write down explicitly: we have

Ω1|SpecFp[x,y]/(x2−y3) =
Fp ⊕ Fp

(2x, 3y)
.

Then Ω2
will not be infinitely generated over k.

1
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Remark 1.2. We also know thatH1
cris(A

1
Fp
/W(Fp)) is infinitely generated. How-

ever,

H1
cris(A

1
Fp
/W(Fp))⊗W(Fp) Fp

will no longer be infinitely generated (e.g. by de Rham-Witt). So smoothness still

saves you.

2. Kan extension

The usual solution to this issue is to Kan extend everything that we have in the smooth

case. The case we will deal with falls under the name of “non-abelian derived func-

tors”.

Last semester, Daishi talked about the cotangent complex and how Quillen’s formal-

ism of non-abelian left derived functors can allow for a useful extension of Ωi
past

the smooth case. We will want to apply the same procedure to prismatic cohomology.

Definition 2.1 (Sifted colimits). Let D be a category. Then we call D sifted
if D-colimits in Set commute with finite products (for a proper ∞-categorical

definition, you askD → D×D to be cofinal, i.e. precomposition with it preserves

colimits).

A sifted colimit in a category C is a colimit over a diagram D → C where D is

sifted.

We write FunΣ(−,−) for functors commuting with sifted colimits.

Example 2.2. Any filtered category is sifted.

The opposite simplex category∆op
is a sifted category which is not filtered. Thus,

geometric realizations are sifted colimits.

To see this is sifted in the∞-categorical sense, one shows ∆op → ∆op ×∆op
is

cofinal. For this, one proves the equivalent assertion that

∆op ×∆op×∆op (∆op ×∆op)[m]×[n]/

is contractible. This is the opposite category of the category C of objects [p] with

maps {[p] → [n], [p] → [m]}, so it suffices to show this is contractible. There’s

an adjunction (therefore a homotopy equivalence) to the category of monomor-

phisms [p]→ [m]× [n] by mapping to im f → [m]× [n] where f : [p]× [m]× [n]
is the original map in C (and in the other way, the forgetful functor). It is possi-

ble to see the homotopy type of this final category is ∆n × ∆m
, so it is indeed

contractible.
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We are now ready to understand non-abelian derived functors.

Definition 2.3 (Non-abelian derived functors). Let F : PolyA → C be a functor

landing in an∞-category C admitting all colimits. Taking left derived functors

yields an equivalence

Fun(PolyA, C) ≃ FunΣ(sAlgA, C).
In other words, functors on polynomial algebras admit extensions to sAlgA uniquely

determined by the requirement that the extension commutes with sifted colimits.

The equivalence is given by sending F 7→ LF , the left Kan extension of F :
PolyA → C along the inclusion PolyA ⊂ sAlgA.

Here, we use the∞-category of simplical commutative rings. In this setting, a sim-

plicial commutative A-algebra is a presheaf PolyopA → S sending finite coproducts in

Poly to products of spaces.

Remark 2.4. For nice C and D, we clearly have

Fun(C,D) ≃ FunΣ(PΣ(C),D)
where category PΣ(C) is given by freely adjoining filtered colimits. Formally,

this is defined as the subcategory of presheaves (in spaces) on C spanned by

finite product preserving functors, but even from this perspective the claim is

not difficult to prove.

By definitionPΣ(PolyA) yields sAlgA, so the real content is that the∞-categorical

localization of the ordinary category of simplicial commutative rings yields this

category.

To compute the total derived functor, one uses a projective resolution just like in the

usual case with D(R). Here, this takes the form

LF (B) ≃ |LF (P•)|
where P• → B is some simplicial polynomial algebra resolution. Indeed, geometric

realization | · | is a sifted colimit, and by the determining requirement of LF the for-

mula follows. Even with infinitely many generators, LF (A[S]) = colimS′⊂S LF (A[S ′])
over finite S ′

where we already know the value of the functor.

Example 2.5 (Abelian derived functors). LetA be a normal abelian category. An

object P ∈ A is projective if and only if Hom(P,−) commutes with geometric

realization of simplicial objects.
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Assume A has enough projectives. Then

PΣ(Acomp,proj) ≃ D≥0(A).
The previous formalism taken with a functor A → Ab ↪→ D≥0(Ab) is then

actually computing the usual derived functor

Example 2.6. Take Ωi
B/A as a functor PolyA → D(A). Then the cotangent com-

plex ΛiLB/A is the nonabelian derived functor. If i = 1 we simply mean LB/A,

otherwise Λi
actually means LΛi

, the nonabelian derived functor of exterior

powers.

An important fact we will use is that LB/A agrees with ΩB/A when B is smooth;

the similar statement for prismatic cohomology boils down to this fact. This fol-

lows from the fact that LB/A = 0 for étale A-algebras B, so using the transitivity

triangle étale locally we are looking at the cotangent complex of polynomial al-

gebras. More precisely, factor a smooth map as

A→ A[X1, . . . ,Xn]→ B

where the last map is étale. The transitivity triangle then yields an exact triangle

B⊗ LA[X1,...,Xn]/A → LB/A → 0.

Thus, the first map is an isomorphism and we appeal toΩ1
B/A ≃ B⊗Ω1

A[X1,...,Xn]/A

by the similar exact sequence for Kähler differentials.

We are now ready for the definition of derived prismatic cohomology.

Definition 2.7. Let (A, I) be a bounded prism. The derived prismatic cohomol-
ogy functor

R 7→ L∆R/A

on derived p-complete simplicialA/I-algebrasR is defined as the non-abelian de-

rived functor of ∆R/A onPoly∧A/I, with C as the category of objects inD(p,I)−comp(A)
equipped with a ϕA-semilinear endomorphism.

Specializing to derived p-complete classical rings, this admits a natural global-

ization ∆X/A to p-adic formal schemes.

Remark 2.8. It is important that we use D(p,I)−comp(A) rather than D(A). Al-

though on polynomial algebras the functor lands in this subcategory and the

subcategory has all colimits, these colimits do not commute with the inclusion

to D(A).



DERIVED PRISMATIC COHOMOLOGY 5

In Bhatt’s notes, he uses PolyA/I, but this leads to some additional technical de-

tails later when it is not longer obvious L∆R/A = ∆R/A on a p-completed poly-

nomial ring. I’ve swapped this issue for hiding technical details in what happens

for animation on p-complete polynomial algebras.

Immediately after making this extension, we can obtain a derived Hodge-Tate com-

parison that will fix the defect in the previous example.

Lemma 2.9 (Derived Hodge-Tate). The complex L∆R/A admits an exhaustive N-

indexed increasing filtration Filconj∗ with

grconji (L∆R/A) ≃ (ΛiLR/Ā{−i}[−i])∧p
where the p-completion is derived.

Proof. Consider the case where R ∈ Poly∧A/I. We can put a truncation filtration on

∆R/A, and via Hodge-Tate it has graded pieces
1

Ωi
R/(A/I){−i}[−i].

In particular, we can upgrade ∆R∧/A to an object in the filtered derived category

DF(A/I) := Fun(Zop,Dcomp(A/I)).

We will still want to additionally enforce derived completeness to carry out the Kan

extension, for the same reasons as the previous remark.

Deriving this filtered enhancement, we obtain for generalR a lift ofL∆R/A inDF(A/I)
(by this I mean you can forget the filtration and get the original object). Note that ac-

tually everything still gets an R-module structure; this is because it holds on polyno-

mial rings, and we get a P•
-module structure upon taking a resolution. This becomes

an R-module structure.

Passing to underlying objects in D(A/I) or taking the associated graded gr∗ in the

filtered derived category preserves all colimits. Thus, the associated graded will have

pieces

grconji ≃ L(Ωi
−/(Ā){−i}[−i]),

which almost what we want. One has to check that when we do the non-abelian de-

rived functor procedure onPoly∧A/I instead ofPolyA/I, we get the derived p-completion

of the cotangent complex. After this, the claim follows by noting that in this case (as

well as the usual one without p-completions) derived functors of Ωi
−/Ā

are LΛiL−/Ā.

One can check this by writing down polynomial resolutions to compute both, since

1
As Kush pointed out this is why we call it the conjugate filtration: if we do the same thing in de

Rham cohomology, it is opposite of the Hodge filtration.
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on these we get projective modules after passing through L−/Ā (we’ll get polyno-

mial algebras) and then LΛi
will just be the usual exterior powers. So a polynomial

resolution computes both of these functors as the same sifted colimit over ∆op
. □

Proposition 2.10 (Consequences of the derived Hodge-Tate comparison). The

following are also true for derived prismatic cohomology:

• On p-completely smooth algebras, the value of prismatic cohomology is

unchanged.

• The functor R 7→ L∆R/A is a sheaf for the p-completely étale topology on

the category of derived p-complete A/I-algebras.

• The functor R 7→ L∆R/A is also a sheaf for the quasisyntomic topology.

• The formation of L∆R/A commutes with base change.

• For a perfect prism, we have a comparison to derived crystalline coho-

mology.

Proof. The idea for all of these is to use that L∆R/A is derived (p, I)-complete, and

−⊗L A/I is conservative (reflects isomorphisms). That is, we can test isomorphisms

after passing to L∆R/A (this is essentially derived Nakayama).

We will show (1) in detail. To see that the value is unchanged on smooth algebras, it

then suffices to check this forL∆R/A whenR is p-completely smooth. By the universal

property of Kan extensions, we have a map from

L∆R/A → ∆R/A

compatibly with filtrations by using that this lifts to a morphism in DF(A/I).

The associated graded functor gr∗ : DF(A/I) → D(A/I) is conservative. But we

know the associated graded of both sides for a p-completely smooth algebra, and the

map induced by the universal property will give the map

LΛiLR/Ā{−i}[−i]∧ → Ωi
R/Ā

again induced by the universal property of Kan extensions. However, we know for

the cotangent complex this is an isomorphism, and similarlyLΛi : ModA/I → D(A/I)
does not change its values on flat modules (which will be the case here: Ω1

is a pro-

jective module).

For quasisyntomic descent, by the same strategy the descent isomorphism can be

reduced to testing for the cotangent complex which has flat descent.
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The other claims are similar or easy to prove using the same general strategy to reduce

to properties of the cotangent complex. □

I will now drop the L, as we know the values agree on smooth algebras.

In the previous counterexample to the comparison theorems, the value of prismatic

cohomology will actually be unchanged. However, this Hodge-Tate comparison al-

lows for the graded pieces to “pile up” in a single degree, allowing for infinite dimen-

sional cohomology. It is in fact possible to explicitly describe the first component of

this filtration.

Proposition 2.11 (Describing the first piece). There is a canonical isomorphism

αX : Filconj1 ≃ LX/A{−1}[−1]∧.

Sketch. This argument is taken from Prismatic Dieudonné theory by Anschütz and Le

Bras.

First, we may assume X = Spf(R) is affine by descent. Using the transitivity triangle

for A→ Ā→ R, we obtain

R⊗Ā LĀ/A{−1}[−1]∧ LR/A{−1}[−1]∧ LR/Ā{−1}[−1]∧

or just

grconj0 LR/A{−1}[−1]∧ grconj1 .

It then already looks like the correct thing to consider (which hopefully removes some

mystery from the statement).

To construct αX, it suffices to prove the case when Ā → R is p-completely smooth

and Kan extend. We will therefore restrict ourselves to the smooth affine case in what

follows.

Let us now defineαX. Using smoothness, essentially want to produce an isomorphism

αR : L∧
R/A → (τ≤1∆R/A){1}[1]

which can be done by producing a map to B/J{1}[1] for each prism in the prismatic

site taking the colimit. Here, we’re really using smoothness to ensure we can compute

prismatic cohomology site-theoretically.
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The first way of providing this map is very simple. Given an object (R→ B/J← B)
of the prismatic site (R/A)∆, we have a natural map

L∧
R/A → L∧

(B/J)/B

via the square

R B/J

A B.

Note B/J cuts out an effective Cartier divisor or a regular codimension one embed-

ding. In particular, it is lci. This yields

L(B/J)/B ≃ J/J2[1] ≃ B/J{1}[1].
Thus, we get the map! We can drop the completion since B defines a prism. Note that

if R = A/I, we get the map from the base extension I/I2 → J/J2.

There is also a way to write down this map in terms of Ext groups of the cotangent

complex parameterizing deformation theory problems. For (B, J) ∈ (R/A)∆, we have

an extension

0 J/J2 B/J2 B/J 0.

By definition of the prismatic site, there is a map ι : R→ B/J. Thus, we obtain maps

of extension groups

Ext1(B/J, J/J2)→ Ext1(R, J/J2)→ Ext1(A, J/J2).

Using these extensions E and E′
depending coming from our original extension B/J2,

we obtain a diagram

0 J/J2 E R 0

0 J/J2 E′ A 0

Such a diagram is precisely the solution of a deformation problem, and is classified

by an element of

Ext1(LR/A, J/J
2) ≃ Ext1(LR/A,B/J{1}).

That is, we again get a natural morphism

L∧
R/A → B/J{1}[1].
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Taking a homotopy limit defines a map

αR : L∧
R/A → τ≤0(∆R/A{1}[1]) ≃ (τ≤1∆R/A){1}[1].

Really this is a fancy way of saying we took derived global sections; the truncation

is because the cotangent complex lies in D≤0
. The cohomology sheaves of both sides

are given by R{1} in degree −1 and Ω1
R/A in degree 0. It suffices to show that αR

induces the same maps as the Hodge-Tate comparison would on cohomology sheaves

to get a functorial quasi-isomorphism in the smooth case.

We reduce to the case of A1 = Spf(A⟨x⟩). This is enough, as it will also similarly

prove the case of An
(the only difference is you need to add more generators for Ω1

)

and we can étale localize to this due to working in the smooth case. Base change can

reduce to A = Zp, but this isn’t necessary.

In this case, one explicitly has

L∧
R/A ≃ R⊗Ā I/I2[1]⊕ Rdx.

On the first summand, the map αR is easy to describe for a prism (B, J): it is given

by the base extension I/I2 → J/J2. On Rdx, the morphism factors as

R B/J B/J{1}[1]ι

where the second morphism is the connecting morphism for 0→ B/J{1} → B/J2 →
B/J→ 0.

Now we pass to the limit with this description, and look at what happens for H0
(so

we will study the Rdx component). We obtain a diagram

R

∆R/A ∆R/A{1}[1]

ι

On H0
, by construction of the Bockstein the horizontal morphism induces

βI : H
0(∆R/A)→ H1(∆R/A){1}.

Thus, on H0
we map dx 7→ βI(ι(x)). In particular, αR will induce the identity af-

ter making identifications H0(L∧
R/A) ≃ Ω1,∧

R/A and H0(∆R/A{1}[1]) ≃ Ω1,∧
R/A (this is

Hodge-Tate: the identification is fdx 7→ fβI(x)).

Next, we check H−1
. This is easier, as αR is simply base extension and we see the map

H−1(L∧
R/A) ≃ R⊗Ā I/I2 → H−1(∆R/A{1}[1])
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is the canonical one given by twisting the structure map R → H0(∆R/A) (so in par-

ticular it also matches Hodge-Tate).

Thus, on cohomology sheaves we see that αR yields the same maps as the Hodge-Tate

comparison. We can then conclude that αR induces the canonical Hodge-Tate com-

parison isomorphisms on cohomology sheaves for general smooth algebras, which

concludes the proof. □

Theorem 2.12 (Discrete examples). Assume that (A, I) is a bounded prism, and

assume that R is a derived p-complete simplicial A/I-algebra such that ∆R/A is

concentrated in degree zero.

The following hold:

(1) The φA-linear Frobenius φR on ∆R/A naturally lifts to a δ-A structure on

the ring ∆R/A.

(2) The pair (∆R/A, I∆R/A) gives a prism over (A, I) equipped with a map

R→ ∆R/A = ∆R/A/I∆R/A.

(3) The category “(R/A)∆” of prisms (B, J) over (A, I) equipped with a map

R→ B/J

has an initial object. Moreover, the initial object is the image of an idem-

potent endomorphism of (∆R/A, I∆R/A).

Proof. First, note that ∆R/A is also concentrated in degree zero by applying derived

Nakayama to the map H0(∆R/A)→ ∆R/A.

For item (1), it will be easiest to interpret a δ structure on a simplicial ring R as

map w : R → W2(R) so ε ◦ w = id (ε drops the second coordinate of W2, so

w(x) = (x, δ(x))).

To obtain a simplicial version of the Čech-Alexander complex, first consider a poly-

nomial resolution P•
of the simplicial A/I-algebra R. This can be done functorially.

We then have

∆R/A ≃ |∆P•/A| = colim∆op ∆P•/A.

where the polynomial A/I-algebras in P•
, if chosen functorially, usually have infin-

itely many generators. Prismatic cohomology on these is a colimit of cohomologies

of finitely generated polynomial algebras.

We have a Čech-Alexander complex computing ∆P•/A, which again can be done func-

torially. These are cosimplicial algebras, and to obtain the actual complex one takes

totalization: this is a limit over ∆.
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It follows that

∆R/A ≃ colim∆op lim∆FA(R)

where FA(R) is a simplicial object that assembles the Čech-Alexander complexes for

P•
. That is, FA(R) is a simplicial cosimplicial derived (p, I)-complete δ-A-algebra. The

cosimplicial comes from the Čech-Alexander complexes for individual Pi
which are

cosimplicial δ-A-algebras, but these Pi
come from a simplicial polynomial algebra P•

and so we assemble them into a simplicial cosimplicial object.

The point of all of this is that FA(R) has a δ-A-algebra structure classified by a map

FA(R)→W2(FA(R)).

On the right, this means you apply W2 termwise as everything is termwise a δ-A-

algebra.

This morphism lies over A → W2(A) and splits W2(FA(R)) → FA(R) (this is the ε
part of the characterization). Now just applying colimits and limits to everything, we

get a map

∆R/A → colim∆op lim∆W2(FA(R))

lying over A→W2(A), and splitting

colim∆op lim∆W2(FA(R))→ ∆R/A.

Claim. We have colim∆op lim∆W2(FA(R)) ≃W2(∆R/A).

To see this, note that there is a functorial pullback square

W2(B) B

B B⊗L
Z Fp

F

φ

which also holds in simplicial rings. In particular, we get a pullback square

lim∆W2(FA(R)) lim∆FA(R)

lim∆FA(R) (lim∆FA(R))⊗L
Z Fp

F

φ

We used here that the tensor product with Fp commutes with limits. We were able

to pull in W2 as it’s defined termwise.

Next, we apply a colimit over ∆op
. To argue this produces a cartesian square, we will

need to appeal to some facts about∞-categories.
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The cartesian square can be written as a finite limit. Thus, the claim that colim∆op pre-

serves cartesian squares in an∞-category C would follow from a more general claim

that sifted colimits (e.g. colimits indexed by ∆op
) commute with pullback squares.

Fact. If C is a stable∞-category this is true (basically by definition) since pullback

squares are pushout squares.

Unfortunately, in our case the category of simplicial commutative rings is not stable.

However, the category of (animated) simplicial commutativeA-algebras is Grothendieck

prestable by SAG C.1.5.7 applied to PolyA. In particular, every pushout square is a

pullback square by SAG C.1.2.6. Thus sifted colimits will preserve pullback squares.

We therefore get a pullback square again after applying colim∆op . Our new square is

colim∆op lim∆W2(FA(R)) ∆R/A

∆R/A ∆R/A ⊗L
Z Fp.

F

φ

Here, we used the same argument on the bottom right. Revisiting the maps we wrote

earlier with this identification, by discreteness we have precisely produced a δ-A-

algebra structure on ∆R/A, proving (1).

Part (2) is then immediate from derived (p, I)-completeness and discreteness of ∆R/A.

To deduce the claim, we need ∆R/A to be a discrete derived (p, I)-complete δ-A-

algebra without I-torsion to apply Lemma 3.5 in the paper (rigidity of prisms). Ob-

serve ∆R/A ⊗L A/In must also be discrete due reducing to I = (d) and applying the

distinguished triangle

∆R/A ⊗L
A A/In ∆R/A ⊗L

A A/In+1 ∆R/A.

Since the Mittag-Leffler condition is satisfied the R lim will be discrete. We don’t get

any I-torsion since reducing to I = (d), we see H1(∆R/A) is TorA1 (A/d,∆R/A) which

is isomorphic to the d-torsion.

For part (3) we need to do slightly more work. We will first construct a functorial

map

(∆R/A, I∆R/A)→ (B, J)

for any (B, J) ∈ (R/A)∆ (we use the same meaning as in the statement of (3); recall

R need not be a discrete ring here).
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Fix a resolution P• → R of p-completely ind-smooth A/I-algebras (we can even take

these to be ind-polynomial). Now we have

∆R/A = colim∆op lim
C∈(P•/A)∆

C

in the category of derived (p, I)-complete complexes. This is because limC∈(Pi/A)∆
C

computes ∆Pi/A in the smooth affine case, as we may use the indiscrete topology

(really Čech-Alexander theory tells us we get the same answer).

Now (B, J) (like any other prism we are considering in (R/A)∆) yields compatible

objects in (P•/A)∆, which by abuse of notation we all denote by B. This induces a

map

∆R/A ≃ colim∆op lim
C∈(P•/A)∆

C → colim∆op B = B.

Repeating the argument for (1) shows we get a map of δ-rings. Thus, we have shown

that (∆R/A, I∆R/A) is weakly initial.

To see we get an initial object via an idempotent endomorphism, we appeal to the

following categorical lemma.

Lemma 2.13. Let C be an idempotent complete category and X ∈ C an object.

Let CX\ be the category of objects Y with a morphism X→ Y.

Assume idC factors over

CX\ → C
via F : C → CX\. Then F (X) yields an idempotent endomorphism of X, and the

corresponding retract (image) is an initial object of C.

Apply this to C = (R/A)∆ and X = (∆R/A, I∆R/A). The factoring of the identity

comes from being weakly initial. □

Finally, we will end with an example of computing prismatic cohomology.

Let (A, I) be a bounded prism, and set

R := A/(I, f1, . . . , fr)

where fi are Koszul-regular on A/I. Assume this has bounded p-torsion.

Claim. ∆R/A is concentrated in degree 0 and I torsionfree.

This follows from the Hodge-Tate comparison. We know we have a conjugate filtra-

tion of ∆R/A given by ΛiLR/(A/I){−i}[−i]∧. As R is given by a quotient of A/I by a

Koszul-regular sequence fi (generating J = (fi)), we have

LR/(A/I) ≃ (J/J2)[1].
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Looking at the derived exterior powers, we’ll get Γi
A/I(J/J

2)[i] = ((J/J2)⊗i)Σi
. Thus

all of these components of the conjugate filtration will be concentrated in degree zero,

and then claim then follows.

Now we are in the situation of the previous theorem, and so (∆R/A, I∆R/A) is a weakly

initial object in (R/A)∆.

Proposition 2.14. LetR = A/(I, f1, . . . , fr)where fi are Koszul-regular onA/I

as before. The prism (∆R/A, I∆R/A) is initial in (R/A)∆, and ∆R/A ≃ A
{

fi
d

}∧
(p,d)

.

Remark 2.15. When the prism is perfect, this example is particularly important:

this shows that the prismatic cohomology of a quasiregular semiperfectoid ring

is Ainf(R){fid }
∧

.

Proof. This is a local assertion on Spf A, so by ind-Zariski localization we may assume

that I = (d). Define

B := A

{
fi
d

}∧

(p,d)

We have a natural map B→ ∆R/A; specifying a map from B into a d-torsionfree δ-A-

algebra ∆R/A amounts to specifying a map A → ∆R/A (the structure map) so that it

carries the fi land in d∆R/A. In ∆R/A, by the previous calculation the fi vanish. Thus

we indeed have a map.

If we can show that the natural map

B→ ∆R/A

is an isomorphism, we learn that B is discrete so (B, dB) ∈ (R/A)∆. We also learn

that this prism (B, dB) must be initial. Given a prism (A′, dA′) in (R/A)∆ (so it

has a map R → A′/d) to specify a map (B, dB) → (A′, dA′) amounts to a map

A → A′
sending the xi into (d). The existence of R = A/(d, x1, . . . , xr) → A′/d

forces the condition on the xi to hold, so there is a unique map A → A′
induced

by this. Thus, such an isomorphism would tell us that the initial object of (R/A)∆ is

(B, dB) ≃ (∆R/A, d∆R/A), which is everything we wanted.

Now we turn to showing B → ∆R/A is an isomorphism. It suffices to check in the

universal case by base change. Namely, you can put A = Zp{d, f1, . . . , fr}[δ(d)−1]∧.

Here A/d and R are p-torsionfree.

In this caseB = A
{

fi
d

}∧
(p,d)

identifies as the prismatic envelope of (A, J = (d, f1, . . . , fr)),

after checking the (p, d)-complete regularity condition. It follows B is discrete, and

by the same reasoning it is initial.
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By part (3) of the previous theorem, the map B → ∆R/A admits a retraction (i.e. we

get B → ∆R/A → B with composite equal to the identity). It follows B/dB → ∆R/A

also admits a retraction. The cokernel of this map will be p-torsionfree as ∆R/A is

(since R is). We may therefore just check that

(B/dB)[1/p] ↠ ∆R/A[1/p],

as this will imply the cokernel is trivial and then the claim follows.

By Hodge-Tate, as it is discrete we know ∆R/A[1/p] is generated as a (Banach) R[1/p]-
algebra by gr1 = J/(J2 + I){−1}. It is therefore sufficient to show that

B = A

{
J

I

}
→ ∆R/A

maps
J
I

surjectively onto gr1. This is not too hard to check, since you basically need

to see that
fi
d

don’t get sent to zero. □
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